For AC railway power supply systems with a different frequency than the public grid, high-voltage AC transmission lines are common, connected to the catenary by transformers. This study suggests an alternative design based on an high-voltage DC (HVDC)-feeder, which is connected to the catenary by converters. Such an HVDC line would also be appropriate for DC-fed railways and AC-fed railways working at a public-grid frequency. The converter stations between the public grid and the HVDCfeeder can be sparsely distributed, not denser than on 100 km distances, whereas the converters connecting the HVDC-feeder to the catenary are distributed denser. Their ratings can be lower than present-day substation transformers or converters, since the power flows can be fully controlled. Despite a relatively low-power rating, the proposed converters can be highly efficient because of the use of medium frequency technology. The proposed feeding system results in lower material usage, lower losses and higher controllability compared with the present solutions. Simulations of the proposed solution show clear advantages regarding transmission losses and voltages compared with conventional systems, especially for cases with weak feeding, and when there are substantial amounts of regeneration from the trains.
QC 20130813