Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aljumaili, Mustafa
    et al.
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Karim, Ramin
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Wandt, Karina
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Tretten, Phillip
    Luleå tekniska universitet, Drift, underhåll och akustik.
    eMaintenance Ontologies for Data Quality Support2015In: Journal of Quality in Maintenance Engineering, ISSN 1355-2511, E-ISSN 1758-7832, Vol. 21, no 3, p. 358-374Article in journal (Refereed)
    Abstract [en]

    Purpose – The purpose of this paper is to explore the main ontologies related to eMaintenance solutions and to study their application area. The advantages of using these ontologies to improve and control data quality will be investigated.

    Design/methodology/approach – A literature study has been done to explore the eMaintenance ontologies in the different areas. These ontologies are mainly related to content structure and communication interface. Then, ontologies will be linked to each step of the data production process in maintenance.

    Findings – The findings suggest that eMaintenance ontologies can help to produce a high quality data in maintenance. The suggested maintenance data production process may help to control data quality. Using these ontologies in every step of the process may help to provide management tools to provide high quality data.

    Research limitations/implications – Based on this study, it can be concluded that further research could broaden the investigation to identify more eMaintenance ontologies. Moreover, studying these ontologies in more technical details may help to increase the understandability and the use of these standards.

    Practical implications – It has been concluded in this study that applying eMaintenance ontologies by companies needs additional cost and time. Also the lack or the ineffective use of eMaintenance tools in many enterprises is one of the limitations for using these ontologies.

    Originality/value – Investigating eMaintenance ontologies and connecting them to maintenance data production is important to control and manage the data quality in maintenance.

  • 2.
    Asplund, Matthias
    et al.
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Famurewa, Stephen Mayowa
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Rantatalo, Matti
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Condition monitoring and e-maintenance solution of railway wheels2014In: Journal of Quality in Maintenance Engineering, ISSN 1355-2511, E-ISSN 1758-7832, Vol. 20, no 3, p. 216-232Article in journal (Refereed)
    Abstract [en]

    Purpose – The purpose of this paper is to investigate the failure-driven capacity consumption of wheels on the track, to determine whether there are some relations to vehicle wheel configurations that show a larger amount of failures, and to ascertain the influence of the temperature and the travelling direction of the train on the number of events. This information can be used to develop prognostic health management (PHM) so that more track capacity can be gained without modifications, re-building or re-investments. Design/methodology/approach – This paper presents a study of 1,509 warning and alarm events concerning train wheels. The data come from the infrastructure manager’s wheel defect detectors and wheel profile measurement system. These data have been analysed and processed to find patterns and connections to different vehicles, travelling directions and temperatures. Findings – Lower temperatures increase the probability of wheels having high vertical forces. Trains with different wheel configurations show different results. With high vertical forces, the probability of wheel failures at axle 6 and 7 is high for locomotives with two bogies and three axles in each bogie (2x3). All these findings can be used to develop the maintenance, monitoring and inspection principles for wheels. Practical implications – The inspection of wheels to detect failures needs to be more frequent on days and in seasons with lower temperatures. The wheel inspection should be performed more frequently at axle 6 and 7 for locomotives with a 2x3 wheel configuration. The inspection and monitoring of wheels need to be carried out more carefully for trains travelling south, to avoid a large amount of wheels with high force levels rolling in the southern direction. Originality/value – The analysis carried out in this paper identifies important factors that correlate with the high occurrence of wheel defects. It also proposes a conceptual e-maintenance model for the combination of wheel condition monitoring data from different system. The value of this study is the provision of information to support prognostic and health management system to support proactive maintenance.

  • 3.
    Kour, Ravdeep
    et al.
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Tretten, Phillip
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Karim, Ramin
    Luleå tekniska universitet, Drift, underhåll och akustik.
    eMaintenance solution through online data analysis for railway maintenance decision-making2014In: Journal of Quality in Maintenance Engineering, ISSN 1355-2511, E-ISSN 1758-7832, Vol. 20, no 3, p. 262-275Article in journal (Refereed)
    Abstract [en]

    Purpose – The purpose of this paper is to demonstrate how research within the railway sector is developing eMaintenance solutions using the cloud and web-based applications for improved condition monitoring, better maintenance and increased uptime. This eMaintenance solution is based on the on-line data acquisition, integration and analysis leading to effective maintenance decision making.Design/methodology/approach – In the proposed methodology, data are acquired from railway measurement stations to the eMaintenance cloud, where they are filtered, fused, integrated and analyzed to assist maintenance decisions. Extensive consultation with stakeholders has resulted in the analysis of railway data.Findings – The paper provides a concept for a web-based eMaintenance solution for railway maintenance stakeholders for making fact-based decisions and develops more efficient and economically sound maintenance policies. Train wheels reaching their maintenance and safety limits are visualised in grids and graphs to assist stakeholders in making the appropriate maintenance decisions.Practical implications – In this paper the authors have demonstrated that the wheel profile and force data can be remotely collected through cloud utilization. The information generated can be used for maintenance decision making. Similarly, other measurable data can also be utilized for maintenance decision making.Originality/value – This paper describes the importance of eMaintenance solution through online data analysis to make effective and efficient railway maintenance decisions, as a case study.

  • 4.
    Parida, Aditya
    et al.
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Kumar, Uday
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Galar, Diego
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Stenström, Christer
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Performance measurement and management for maintenance: A literature review2015In: Journal of Quality in Maintenance Engineering, ISSN 1355-2511, E-ISSN 1758-7832, Vol. 21, no 1, p. 2-33Article in journal (Refereed)
    Abstract [en]

    Purpose:The purpose of this paper is to provide a literature review of the performance measurement in maintenance. The authors aim to discuss the background and development of the performance measurement for maintenance, besides defining the concept of performance measures for maintenance and the frameworks developed.Design/methodology/approach:A detailed and extensive literature search and study was undertaken by the authors on the concept and definition of performance measurement, performance indicators, maintenance performance indicators and various performance frameworks. The history and theory of performance measurement over different phases of business and technological developments have been critically examined and analysed in this review paper. Findings:This paper reviews and presents the different performance indicators (PIs) and performance measurement (PM) frameworks like; balanced scorecard, performance prism, performance pyramid and performance matrix etc, and identifies their characteristics and shortcomings. After considering related issues and challenges, frameworks and approaches for the maintenance performance measurement (MPM) are also presented, where the emerging techniques like; e-maintenance have also been discussed amongst others. More and more industries are applying the balanced and integrated MPM frameworks for their competitive survivability and sustainability.Practical implications:The concept, issues and approaches considered for the MPM frameworks can be adapted by the practicing managers, while trying to define and develop an MPM framework for the operation and maintenance activities. The considerations of the advantages and limitations of different frameworks can provide insights to the managers for implementation. Originality/value:Some literature reviews on MPM and MPM frameworks are available today. This paper makes an attempt to provide a detailed and relevant literature review, besides adding value in this new and emerging area.

  • 5.
    Singh, Sarbjeet
    et al.
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Kumar, Rupesh
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Kumar, Uday
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Applying human factor analysis tools to a railway brake and wheel maintenance facility2015In: Journal of Quality in Maintenance Engineering, ISSN 1355-2511, E-ISSN 1758-7832, Vol. 21, no 1, p. 89-99Article in journal (Refereed)
    Abstract [en]

    PurposeThis paper demonstrates three techniques to extract human factor information from specific railway maintenance tasks. It describes the techniques and shows how these tools can be applied to identify improvements in maintenance practices and workflow. Design/methodology/approachThree case studies were conducted on single group of technicians (N=19) at a railway maintenance workshop in Luleå, Sweden. Case study I examined the posture of the technicians while they were changing the brake shoes of freight wagons; the study employed the Standard Nordic Questionnaire and a videotape using the Ovako Working Posture Analysis System (OWAS). Case study II looked at maintenance repair times required to change the wheel axle on freight wagons at the workshop. A video filming method suggested by the European Agency for Safety and Health at Work was used to measure actual maintenance time. Finally, case study III considered the technicians’ (N=19) perception of work demands, their control over the work and their social support while performing maintenance tasks (brake shoe and wheel axle maintenance); to this end, the case study used a demand control support questionnaire. FindingsIn the first case study, the Standard Nordic Questionnaire confirmed that technicians at this particular railway vehicle maintenance workshop suffer from back and shoulder pain. The Ovako Working Posture Analysis showed that 21% of the working time required to fit the brake wedge and cotter pin fits into two OWAS categories: category 3, where “change is required as soon as possible,” and category 4, where “change is required immediately”. Problems stem from poor workplace layout, incorrect posture and inaccessibility of tools and components. In the second study, the video analysis indicated that the working time to change the wheel axle of a freight wagon is greatly affected by poor workplace layout. The third case study showed that the technicians have lower “psychological demands” (mean=13), “higher control over work” (mean= 16) and “high social support” (mean= 22).Practical implicationsThe objective of this study was to apply knowledge about human factors to the functional relationships between maintenance personnel, tasks and the working environment to improve safety. If the workplace layout, working posture, maintenance manuals and accessibility of tools are poorly planned, maintenance performance can be adversely affected. The results of this study should assist maintenance management to design new policies and guidelines for improving the work environment.Originality/valueThree case studies were conducted at a railway maintenance workshop in Luleå, Sweden, to collect data on how human factors affect various railway maintenance tasks.

  • 6.
    Stenström, Christer
    et al.
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Parida, Aditya
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Measuring performance of linear assets considering their spatial extension2014In: Journal of Quality in Maintenance Engineering, ISSN 1355-2511, E-ISSN 1758-7832, Vol. 20, no 3, p. 276-289Article in journal (Refereed)
    Abstract [en]

    Purpose - In this study we investigate how performance of linear assets can be analysed and displayed, considering both the technical asset and the user context, to simplify cognitive tasks of planning and decision-making.Design/methodology/approach - Linear, or continuous assets, such as roads, railways, electrical grids and pipelines, are large, geographically spread out technical systems. Linear assets are comprised of system, subsystem and component levels. Thus, asset managers are involved with each level of the linear asset; asset management has strategic, tactical and operational levels. A methodology is developed to link together the technical and organisational levels and to measure asset performance considering their spatial extension. Geographical location and time are used as independent variables.Findings - For performance measurement of linear assets, it is found that the spatial extension is an equally generic dimension as time is for technical assets in general. Furthermore, as linear assets actually are combinations of linear and point assets; separate analysis of these assets is a prerequisite. Asset performance has been studied in a case study in terms failures and cost; the results indicate that the methodology visualise poor, as well as good, performance in an easy to interpret manner. Besides, the results indicate that other parameters related to dependability can be presented in a similar way.Practical implications - This study highlights the importance of including the spatial or geographical extension of linear assets in infrastructure managers’ performance measurement. It is believed that the methodology can make planning and decision making more effective by pointing out improvement areas in technical assets, in a way that is appealing to both technicians and managers.Originality/value - The presented methodology and case study analysed performance in function of both the technical and organisational levels, including the spatial component. It is believed that the methodology for analysing and visualising performance of linear assets is distinctive.Keywords - Linear assets, performance measurement, dependability, maintenance, eMaintenance, railways

    Download full text (pdf)
    fulltext
  • 7.
    Stenström, Christer
    et al.
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Parida, Aditya
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Kumar, Uday
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Galar, Diego
    Luleå tekniska universitet, Drift, underhåll och akustik.
    Performance indicators and terminology for value driven maintenance2013In: Journal of Quality in Maintenance Engineering, ISSN 1355-2511, E-ISSN 1758-7832, Vol. 19, no 3, p. 222-232Article in journal (Refereed)
    Abstract [en]

    Purpose – Value driven maintenance (VDM) is a fairly new maintenance management methodology based on four maintenance value drivers and the formula of net present value (NPV) to calculate the value of different maintenance strategies. However, the dependability of the engineering assets needs to be assessed in order to make an estimation of the NPV. Therefore, standardised indicators have been critically analysed to find the most essential indicators for the four value drivers and for estimation of the NPV. Terminology containing performance drivers and killers are common in the field of asset management, but not many publications can be found for their detailed descriptions. One section in this paper is therefore dedicated to review these terms. A comprehensive description and classification of performance killers and drivers, and of indicators for VDM are presented in this paper.

    Design/methodology/approach – Review of literature for technical terminology and review of standards for identification of indicators for maintenance performance measurement and NPV of maintenance.

    Findings – Common description of technical terminology as used by researchers and identification of the most important indicators for maintenance performance measurement and the NPV of maintenance. Indicators classified under economic, technical, organizational and HSE perspectives from EN 15341 standards are discussed and identified.

    Value – Description of emerging terminology in maintenance performance measurement adds to the consistency in communication of researchers and business stakeholders. Also, the identified maintenance performance indicators can facilitate performance measurement of organisations new to the process of measuring and analysing their performance.

    Download full text (pdf)
    FULLTEXT01
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf