Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Remaining useful life estimation using time trajectory tracking and support vector machines
Luleå tekniska universitet, Drift, underhåll och akustik.ORCID iD: 0000-0002-4107-0991
Luleå tekniska universitet, Drift, underhåll och akustik.ORCID iD: 0000-0001-8111-6918
NSFI/UCR Center for Intelligent Maintenance System (IMS), University of Cincinnati, Cincinnati, OH 45221, USA.
NSFI/UCR Center for Intelligent Maintenance System (IMS), University of Cincinnati, Cincinnati, OH 45221, USA.
Responsible organisation
2012 (English)In: 25th International Congress on Condition Monitoring and Diagnostic Engineering (COMADEM 2012): 18–20 June 2012, Huddersfield, UK, IOP Publishing Ltd , 2012, article id 012063Conference paper, Published paper (Refereed)
Abstract [en]

In this paper, a novel RUL prediction method inspired by feature maps and SVM classifiers is proposed. The historical instances of a system with life-time condition data are used to create a classification by SVM hyper planes. For a test instance of the same system, whose RUL is to be estimated, degradation speed is evaluated by computing the minimal distance defined based on the degradation trajectories, i.e. the approach of the system to the hyper plane that segregates good and bad condition data at different time horizon. Therefore, the final RUL of a specific component can be estimated and global RUL information can then be obtained by aggregating the multiple RUL estimations using a density estimation method.

Place, publisher, year, edition, pages
IOP Publishing Ltd , 2012. article id 012063
Series
Trafikverkets forskningsportföljer
Series
Journal of Physics: Conference Series, ISSN 1742-6588
Keywords [en]
RUL prediction method, SVM, hyper planes
National Category
Other Civil Engineering
Research subject
FOI-portföljer, Äldre portföljer
Identifiers
URN: urn:nbn:se:trafikverket:diva-12517DOI: 10.1088/1742-6596/364/1/012063ISI: 000307707100063Scopus ID: 2-s2.0-84862330050Local ID: e8d125aa-ac86-49e6-af08-d0a4c28af511OAI: oai:DiVA.org:trafikverket-12517DiVA, id: diva2:1824486
Conference
International Congress on Condition Monitoring and Diagnostic Engineering Management : 18/06/2012 - 20/06/2012
Projects
JVTC
Funder
Swedish Transport Administration, TRV 2011/58769Available from: 2016-10-03 Created: 2024-01-05

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Galar, DiegoKumar, Uday

Search in DiVA

By author/editor
Galar, DiegoKumar, Uday
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf