Railway transportation is exposed to a higher demand that necessitates the use of trains with higher speed and heavier axle loads. These increase the track geometry degradation rate, which needs a more effective control on geometry degradation. Keeping the track geometry in acceptable levels requires proper inspection and maintenance planning that inevitably entails in-depth knowledge of track geometry degradation. In addition, it is needed to identify the most effective approach for degradation modelling. To do so, it is vital to synthesis published results into a summary of what is known and validated and what is not as a major step. To this end, this paper reviews track degradation models, discusses various degradation measures, and proposes directions for future researches. It is found that combining the mechanistic and statistical approaches can leads to a more accurate prediction of track geometry degradation behaviour.
Godkänd; 2016; Bibliografisk uppgift: Containing selected papers from the ICRESH-ARMS 2015 conference in Lulea, Sweden, collected by editors with years of experiences in Reliability and maintenance modeling, risk assessment, and asset management, this work maximizes reader insights into the current trends in Reliability, Availability, Maintainability and Safety (RAMS) and Risk Management. Featuring a comprehensive analysis of the significance of the role of RAMS and Risk Management in the decision making process during the various phases of design, operation, maintenance, asset management and productivity in Industrial domains, these proceedings discuss key issues and challenges in the operation, maintenance and risk management of complex engineering systems and will serve as a valuable resource for those in the field. ; 20151222 (andbra)