Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time Series Forecasting using a Two-level Multi-objective Genetic Algorithm: A case study of cost data for tunnel fans
Luleå tekniska universitet, Drift, underhåll och akustik.ORCID-id: 0000-0002-1967-6604
Luleå tekniska universitet, Drift, underhåll och akustik.ORCID-id: 0000-0001-5620-5265
Luleå tekniska universitet, Drift, underhåll och akustik.ORCID-id: 0000-0001-7744-2155
Ansvarlig organisasjon
2018 (engelsk)Inngår i: Algorithms, E-ISSN 1999-4893, Vol. 11, nr 8, artikkel-id 123Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The aim of this study is to develop a novel two-level multi-objective genetic algorithm (GA) to optimize time series forecasting data for fans used in road tunnels by the Swedish Transport Administration (Trafikverket). The first level is for the process of forecasting time series cost data, while the second level evaluates the forecasting. The first level implements either a multi-objective GA based on the ARIMA model or based on the dynamic regression model. The second level utilises a multi-objective GA based on different forecasting error rates to identify a proper forecasting. Our method is compared with the ARIMA model only. The results show the drawbacks of time series forecasting using the ARIMA model. In addition, the results of the two-level model show the drawbacks of forecasting using a multi-objective GA based on the dynamic regression model. A multi-objective GA based on the ARIMA model produces better forecasting results. In the second level, five forecasting accuracy functions help in selecting the best forecasting. Selecting a proper methodology for forecasting is based on the averages of the forecasted data, the historical data, the actual data and the polynomial trends. The forecasted data can be used for life cycle cost (LCC) analysis.

sted, utgiver, år, opplag, sider
MDPI , 2018. Vol. 11, nr 8, artikkel-id 123
Emneord [en]
ARIMA model, data forecasting, multi-objective genetic algorithm, regression model
HSV kategori
Forskningsprogram
FOI-portföljer, Äldre portföljer
Identifikatorer
URN: urn:nbn:se:trafikverket:diva-5574DOI: 10.3390/a11080123ISI: 000443614500015Scopus ID: 2-s2.0-85052696396OAI: oai:DiVA.org:trafikverket-5574DiVA, id: diva2:1701280
Prosjekter
LCC-metodik med koppling till Maximo
Forskningsfinansiär
Swedish Transport Administration, TRV 2016/10828
Merknad

Validerad;2018;Nivå 2;2018-08-14 (inah)

Tilgjengelig fra: 2022-10-05 Laget: 2022-10-05 Sist oppdatert: 2023-03-29

Open Access i DiVA

fulltekst(1915 kB)75 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1915 kBChecksum SHA-512
0deda9910310152d55eb9d37b4cd4829b1503fe66e37bc5ad14ef275249f77bd9b7aab6f77be35e813241770ab701be74df4ff180eff361754f6515a6214549b
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Al-Douri, Yamur K.Hamodi, HussanLundberg, Jan

Søk i DiVA

Av forfatter/redaktør
Al-Douri, Yamur K.Hamodi, HussanLundberg, Jan
I samme tidsskrift
Algorithms

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 75 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 141 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
v. 2.43.0