Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Expert-sourcing domain-specific knowledge: The case of synonym validation
Trafikverket. Blekinge Tekniska Högskola, Institutionen för programvaruteknik.
Max Planck Institut für Informatik, DEU.
Ansvarig organisation
2019 (Engelska)Ingår i: CEUR Workshop Proceedings, CEUR-WS , 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

One prerequisite for supervised machine learning is high quality labelled data. Acquiring such data is, particularly if expert knowledge is required, costly or even impossible if the task needs to be performed by a single expert. In this paper, we illustrate tool support that we adopted and extended to source domain-specific knowledge from experts. We provide insight in design decisions that aim at motivating experts to dedicate their time at performing the labelling task. We are currently using the approach to identify true synonyms from a list of candidate synonyms. The identification of synonyms is important in scenarios were stakeholders from different companies and background need to collaborate, for example when defining and negotiating requirements. We foresee that the approach of expert-sourcing is applicable to any data labelling task in software engineering. The discussed design decisions and implementation are an initial draft that can be extended, refined and validated with further application. Copyright © 2019 by the paper’s authors.

Ort, förlag, år, upplaga, sidor
CEUR-WS , 2019.
Serie
Trafikverkets forskningsportföljer
Nyckelord [en]
Computer software selection and evaluation, Design, Supervised learning, Data labelling, Design decisions, Domain-specific knowledge, Expert knowledge, High quality, Supervised machine learning, Task-needs, Tool support, Requirements engineering
Nationell ämneskategori
Programvaruteknik
Forskningsämne
FOI-portföljer, Bygga
Identifikatorer
URN: urn:nbn:se:trafikverket:diva-5762Scopus ID: 2-s2.0-85068039728OAI: oai:DiVA.org:trafikverket-5762DiVA, id: diva2:1734380
Konferens
2019 Joint of International Conference on Requirements Engineering: Foundation for Software Quality Workshops, Doctoral Symposium, Live Studies Track, and Poster Track, REFSQ-JP 2019, 18 March 2019
Projekt
KREDA - Kravhantering i en digital anläggning
Forskningsfinansiär
Trafikverket, TRV 2017/92595Tillgänglig från: 2023-02-06 Skapad: 2023-02-06 Senast uppdaterad: 2023-02-16Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Person

Unterkalmsteiner, Michael

Sök vidare i DiVA

Av författaren/redaktören
Unterkalmsteiner, Michael
Av organisationen
Trafikverket
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 101 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf