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Post weld treatment 

Implementation on bridges with special focus on HFMI 

 

POJA SHAMS HAKIMI 

MOHAMMAD AL-EMRANI 

Department of Civil and Environmental Engineering 
Division of Structural Engineering 

Steel and Timber Structures 

Chalmers University of Technology 

 

ABSTRACT 

Post weld treatment is a measure of fatigue enhancement of steel and aluminum 

structures and is today a common procedure in many industries due to the substantial 

improvements that is gained by it. In the bridge industry, steel and composite bridges 

have lost competitiveness in recent years due to high requirements on the fatigue 

design, resulting in more use of material. Although, experiences regarding post weld 

treatment have not come as far in this industry, studies indicate that large savings with 

up to 28% material reduction can be achieved for a bridge. This combined with the 

fact that higher material grades increase fatigue performance after treatment, yields 

considerable economic advantages and positive effects on the bridges life cycle costs, 

not to forget the environmental benefits.  

Herein, examples of ten new and old bridges that have been subjected to post weld 

treatment are presented, together with international studies regarding fatigue 

improvement assessment and procedure and quality control recommendations. 

Furthermore, studies of modeling this technology by finite elements are presented to 

show the extent of knowledge that exists within this filed, including residual stress 

simulations, simulations of the post weld treatment and fatigue simulations by 

different methods. This is of importance for making parameter studies and gain more 

experience prior to bridge application. 

 

Key words: bridges, fatigue, enhancement, post weld treatment, HFMI, finite element 

modelling  
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SAMMANFATTNING 

Svetsefterbehandling är ett sätt att förbättra utmattningsegenskaperna hos stål- och 

aluminiumkonstruktioner och är idag en vanlig metod i många industrier tack vare 

den markanta förbättringen som erhålls. Inom broindustrin har stål- och 

samverkansbroar tappat konkurrenskraft de senaste åren på grund av höga krav på 

utmattningsdimensioneringen, vilket resulterat i mer materialanvändning. Fastän 

erfarenheten av svetsefterbehandling inte kommit lika långt i denna industri visar 

studier på att stora besparingar med upp till 28 % materialreduktion kan uppnås för en 

bro. I kombination med det faktum att högre materialhållfasthet kan öka 

utmattningshållfastheten efter svetsefterbehandling fås betydliga ekonomiska fördelar 

både i byggskedet och ur ett livscykelperspektiv samt inte minst fördelar för miljön. 

I denna rapport presenteras exempel på tio nya och gamla broar som har blivit 

svetsefterbehandlade samt internationella studier rörande rekommendationer för 

utvärdering av förbättring i utmattningshållfasthet och process och kvalitetssäkring. 

Dessutom presenteras studier som berör modellering av svetsefterbehandling med 

finita element för att sammanfatta kunskapen som finns inom området. Dessa 

inkluderar simulering av egenspänningar, svetsefterbehandlingens effekter samt 

utmattningsbeteendet. Detta är av vikt för att utföra parameterstudier inför tillämpning 

på broar. 

 

Nyckelord: broar, utmattning, förbättring, svetsefterbehandling, HFMI, finita element 
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1 Introduction 

As a preliminary study requested by the Swedish Road Administration under the 

project “Competitive Steel & Composite Bridges”, this report is intended to present a 

state-of-the-art regarding post weld treatment (PWT) implementation on bridges. 

Special focus is put on the High Frequency Mechanical Impact (HFMI) treatment 

techniques. Studies conducted at Chalmers University of Technology show that 

significant improvement of fatigue life can be achieved by PWT of bridge details 

prone to fatigue failure [1]. This can in some cases lead to material savings with up to 

28% [2]. 

1.1 Background 

Fatigue enhancement procedures are today used in a variety of applications in many 

different industries. Some examples are crane [3][4][5], wind power [5][6], offshore 

[7][8], aircraft, spacecraft and the automotive industries [9]. With such procedures, 

the automotive industry has been able to substantially reduce material consumption in 

their products in recent years. This has led to reduced fuel consumption, increased 

power output and higher safety, among other benefits [9]. During the last seven years, 

PWT has become an accepted method for life extension of existing offshore 

structures. Thanks to the progress in understanding the performance of different 

treatment procedures and the development of quality assurance methods, the use of 

PWT techniques for fatigue life enhancement of welded details is now common 

practice in this field [7].   

In the bridge industry, the progress of fatigue enhancement procedures has not come 

as far. In many cases for steel and composite bridges, failure due to some limited 

number of fatigue-sensitive details is the decisive factor in design, resulting in higher 

material usage than otherwise necessary in ultimate or serviceability limit states. This 

has led to reduced competitiveness for these bridges. With implementation of fatigue 

enhancement methods such as PWT on a few details in steel bridges, substantial 

material savings can be achieved. In combination with use of high strength steel, this 

can result in considerable weight reduction and economic advantages. Many studies 

show that the fatigue strength of welded steel details can become at least 1.3-1.6 times 

stronger by PW-treating the weld toe, removing flaws and impurities that were 

introduced during welding. Moreover, the PWT also results in a smoother geometry in 

the transition between weld and steel plate, reducing stress concentrations. These 

effects together increase the number of load cycles necessary to reach fatigue failure 

since a high number of load cycles can be endured during the crack initiation phase. 

In non-treated welds, the initiation phase is negligible, thus, fatigue loading almost 

directly gives rise to crack propagation. 

1.2 Objectives 

The aim of this report is to give an overview of different post weld treatment 

techniques and set a base for further research regarding implementation of such 

techniques on bridges. Deeper focus is put on HFMI treatments. Mainly three 

questions are answered: 

 What international studies have been made regarding PWT, and are there 

relevant fatigue tests and design rules/recommendations available? 

 Are there examples of PWT applications in the bridge industry? 
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Are there any examples of FE-modeling of PWT-effects and can they give reliable 

predictions? 



CHALMERS, Civil and Environmental Engineering, Report 2014:8 
3 

2 Post weld treatment 

In this section, a compilation of relevant information and studies are presented, both 

generally for different post weld treatment techniques, and more specifically for the 

HFMI methods. HFMI treatments include several different high frequency peening 

techniques and equipment, such as ultrasonic impact treatment (UIT), ultrasonic 

peening (UP), high-frequency impact treatment (HiFIT), etc. Common for all of these 

techniques is that indenters of high strength steel are used to impact the steel material 

at the weld toe region with high frequency. In general, all post weld treatment 

techniques enhance the fatigue strength through two main mechanisms: 

1. Smother transition in the area of weld toe 

2. Removal of weld defects in the weld toe from which fatigue cracking takes place 

in as-welded details (undercut) 

These mechanisms contribute to reduced stress concentrations and a positive shift of 

fatigue strength properties towards those of plain, non-welded details, see Figure 1. 

The crack initiation phase becomes longer and leads to fatigue strength improvement. 

Thanks to a longer crack initiation phase, increase of steel grade also improves fatigue 

strength in PW-treated welded details [10]. 

 

Figure 1. Schematic illustration of fatigue life of steel details. Ni = Number of cycles 

for crack initiation. Np = N cycles for crack propagation to failure. Adapted from [2]. 

Some PWT techniques, such as HFMI, give additional advantages by altering the 

residual stress state around the weld toe area. In as-welded details, the weld toe area 

usually experiences considerable tensile stresses [4], which are unfavorable with 

respect to fatigue. Altering the residual stresses into more favorable compressive 

stresses can thus lead to higher fatigue strength. Based on the discussed effects, PWT 

methods can be divided into two groups. Group 1 – “Stress Concentration Factor 

(SCF) reducing” and Group 2 – “Residual stress altering”. 

The benefits gained from residual stress altering PWTs of the weld toe can be 

substantial, especially in combination with high material strengths, however, the 

induced compressive residual stresses might decrease or completely get relaxed under 

certain loading conditions. Awareness of this is important and more on this subject is 

discussed in section 2.3. Furthermore, it is emphasized that weld toe treatment is 

irrelevant for details in which the fatigue strength is governed by failure in the weld 

root. 

  

 

Ni Np 

Ni Np 

Ni Np 

Plain 

Welded 

PWT 
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2.1 Comparison of different methods 

Four different weld profiles are illustrated in Figure 2. The first is an as-welded 

specimen (AW) and the other three are specimens treated with different PWT 

techniques; Burr grinding (BG), ultrasonic impact treatment (UIT) and TIG dressing 

(TIG). 

 

Figure 2. The as-welded (AW) weld profile with the undercut defect and the weld 

profiles after treatment with burr grinding, ultrasonic impact treatment and TIG 

dressing, respectively. Adapted from [4]. 

BG and TIG primarily enhance fatigue performance by making the transition between 

weld and base plate more continues, reducing stress concentration (Group 1). These 

methods also remove weld toe flaws and impurities, such as the devastating undercut 

from which cracks normally propagate under fatigue loading. With BG, the material is 

mechanically ground away while with TIG, the weld toe is re-melted. UIT mainly 

enhances fatigue performance by inducing compressive residual stresses through cold 

working with high frequency impacts (Group 2). Also in this case, stress 

concentrations are reduced and weld defects removed. Figure 3 illustrates typical 

examples of tools used for these PWTs. 

 

Figure 3. Burr grinding (left), TIG dressing(middle) and UIT (right) tools [4][11]. 

These techniques were compared in a study by Pedersen et al [4]. The study aimed at 

finding the most suitable PWT method for mass production in the mobile lifting 

equipment and crane industry, where high strength steel (HSS) is a common choice of 

material and a low weight is of importance. In these structures, medium cycle fatigue 

with high stress ranges is decisive for the failure. The results of the study are 

presented in Table 1. It was concluded that high strength steel can be used 

advantageously for medium cycle fatigue when PWT is executed. For a fatigue life of 

100.000 cycles, the improvements were practically identical for all methods and for a 

fatigue life of 2 million cycles, UIT gave the highest improvement and BG, a 

considerably lower improvement in comparison.  

 
Undercut 
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Table 1. Comparison of different PWT methods [4]. MC = Medium cycle (100.000), 

HC = High cycle (2 million). 

Method Improvement Comments 
Burr grinding 
 

MC: 
+31% 

HC: 
+49% 

Slow process. Not applicable on thin 
plates. 

TIG dressing 
 

MC: 
+38% 

HC: 
+70% 

Smoothest transition from weld to plate. 
Significantly faster than BG. Flexible with 
regard to Start/Stop. Considerable 
variation of TIG dressed profile along the 
weld length. 

Ultrasonic impact treatment MC: 
+33% 

HC: 
+78% 

By far the fastest technique. More time 
consuming at Start/Stops. Easy to apply. 
Little force input needed => comfortable 
=> better results 

TIG dressing was identified as the most suitable PWT for this application due to the 

large improvements in medium cycle fatigue, availability of equipment and flexibility 

of the process. In the case of lifting cranes, where a few highly stressed welded details 

are decisive for the whole structures capacity, post treating a weld of 500mm resulted 

in a light weight and durable design. 

Tominaga et al [3] also carried out comparisons in their study, regarding repair of 

crane runway girders. These structures carry the cranes and work similarly to bridges. 

The effectiveness of fatigue improvement of UIT was compared to grinding by small 

and large scale fatigue testing of 400MPa mild steel details. According to Tominaga 

et al, UIT gave an improvement of three fatigue classes (corresponding to 8 fold life 

increase) compared to one fatigue class for grinding, in accordance with the fatigue 

classification system of the Japanese Society of Steel Construction. UIT was also 

found to be more efficient from operational aspects, compared to grinding and 

hammer peening. Hammer peening is similar to UIT, but is an older method with 

much lower frequency impacts. 

The Technical Committee 6, under the organization “European Convention for 

Constructional Steelwork”, also discusses various advantages of different PWT 

methods. In general PWT gives most efficient results for detail categories between 

FAT 36 – 80, and negligible effects on categories equal to or above FAT 90. 

Treatment methods belonging to Group 1 (SCF reducing) yield an improvement with 

a factor of 1.3 in stress range. While methods in Group 2 (residual stress altering) 

yield an improvement of 1.3 – 1.6, depending on the applied stress ratio, maximum 

stress, weld detail and choice of method. HFMI is considered to possibly yield even 

higher improvement especially in the case when high strength steel is used.  
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2.2 International recommendations 

Fatigue enhancement with PWT  is basically not covered in international codes, with 

some limited exceptions, according to Nussbaumer [12]. However, recommendations 

do exist. For HFMI treatment, recommendations are currently under development, see 

section 2.3. 

The International Institute of Welding (IIW) gives recommendations regarding four 

different PWT techniques; burr grinding, TIG dressing, hammer peening and needle 

peening [11]. The recommendations are intended for both new structures and for 

fatigue life extension of existing ones. The IIW recommendations address issues as 

equipment, procedures, inspections and quality control and also improvement 

assessment. The improvement assessments are made by means of S-N curves, which 

were derived from laboratory experiments conducted on post weld treated specimens. 

The scope of the recommendations is restricted to steel plate thicknesses between 6 to 

50mm and for steel grades up to 900MPa. Moreover, for the peening improvement 

methods, which rely on compressive residual stresses that are vulnerable to high 

compressive loading, the maximum stresses must not exceed 80% of yield stress and 

stress ratios must be smaller than R = 0.5. 

In the following, examples of IIW recommendations are presented for burr grinding 

and hammer peening. For corresponding recommendations for the other PWTs, it is 

referred to [11]. However S-N curves applying for all PWT improvements are 

presented in Figure 5.  

The extent of weld preparation that is necessary varies depending on the PTW 

applied. For burr grinding, de-slagging and wire brushing of the weld is enough. 

Regarding burr grinding equipment, specific requirements are given by the IIW for 

the rotation speed of the burr, which should be between 15 000 and 40 000rpm in case 

of pneumatic, hydraulic or electric grinders. For air-driven grinders, a pressure of 5 to 

7 bars is recommended. Diameter of the burr should be scaled relative to the plate 

thickness (t), where burrs with diameters between 10 to 25mm should be used on 

plates with thicknesses between 10 to 50mm.  

For the procedure of burr grinding, recommendations are given considering the angle 

of the tool, treatment length and groove depth, see Figure 4. Groove radius should not 

be less than 0,25t. No trace of the original weld toe should remain and no scratches 

should exist in the groove, parallel to its length direction. These properties of the 

groove should be measured and visually inspected in bright light with magnifying 

glass. 

 

Figure 4. Procedure recommendations of IIW for burr grinding [11]. 
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For hammer peening, traces of oxide, scale, spatter and other materials must be 

removed from the loaded plate adjacent to the weld as well as the weld cap. This is 

done by de-slagging and wire brushing, or alternatively by grinding. Peaky or 

severely convex welds can cause defects that result in worsening of the fatigue 

performance when impacted. Thus, preparation in form of light grinding is advised to 

gain a normal shape.  

When residual stress altering PWTs such as hammer peening is applied, the degree of 

fatigue improvement is benefited if the treated detail is subjected to tension during 

treatment. Conversely, a state of compression during treatment lessens the 

improvement. The hammer peening equipment used in most research investigations 

fulfil following specifications; these are therefore recommended. A suitable device 

has piston diameter between 15 to 30mm, runs with an air pressure of 5 to 7 bars and 

has a frequency between 25 and 100Hz. The device weight varies between 1.0 to 

3.5kg and the impact energy delivered, between 5 and 15 Joule. The indenter which 

impacts the material should have a hemispherical shape with a radius of 3 to 9mm. It 

must continuously be verified that the indenter is not worn out.  

When performing hammer peening treatment, the positioning of the indenter is 

important. Both the weld material and the base plate on either side of the weld toe 

need to be deformed. The tool should be held at a 45° angle to the base plate and 

preferably 90° to the direction of travel. A groove depth of at least 0.3mm should be 

reached for structural steels of less than 600MPa and after four passes. Normally, a 

depth of 0.5mm is achieved. It is recommended to combine the use of small and large 

indenter diameters to increases the likelihood of the weld toe actually receiving 

treatment. To assure that these criteria are fulfilled, qualitative inspection should be 

performed to ensure a uniform groove with smooth finish, without any trace of the 

original weld toe. With visual inspection, crack-like flaws can be detected and the 

overall treatment should be compared to reference specimens with well executed 

treatments. 

If all requirements are satisfied, improvement assessment can be carried out with the 

help of the following design S-N curves, see Figure 5. Values within parenthesis 

regard fatigue class (FAT) before treatment. The curves basically give an 

improvement of two FAT classes for BG and TIG, corresponding to a factor of around 

2.0 on fatigue life, and for the peening techniques an improvement of three FAT 

classes, which gives a factor of around 2.8 on fatigue life. Though, reduction 

expressions must be used for plate thicknesses (t) exceeding 25mm, since the S-N 

curves are derived for this reference thickness, see equation (1) [11]. As can be noted, 

for low cycles, no improvement is achieved greater than the curve for parent material, 

FAT 160. A change of slope from m=3 to 5 occurs at 10 million cycles for variable 

amplitude loading. For the peening treatments, IIW gives further restrictions on the 

applied stresses. The higher S-N curves can only be used if compressive loads are 

lower than 0.25fy. When stress ratios of R ≥ 0 are applied, the curves must be used in 

conjunction with maximum stresses instead of stress ranges. 

 ( )  (
  

    
)
   

, (1) 

                     and 
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Det Norske Veritas (DNV) [13] also gives recommendations of PWT improvements, 

by means of factors on fatigue life, see Table 2. Treatments included are grinding, 

TIG dressing and hammer peening. For steel with the yield strength e.g. 340MPa, an 

increase of fatigue life with a factor of 3.4 is attained for grinding and TIG dressing, 

and a factor of 3.74 for hammer peening. Comparing to recommendations of IIW, 

DNV gives substantially longer fatigue lives. It is noted that the difference in 

improvement between BG/TIG and hammer peening is lesser according to DNV. In 

recommendations from NORSOK [14], it is mentioned that in some cases, larger 

improvements can be achieved compared to what is given by DNV. It is also 

mentioned that for existing structures, the fatigue damage at the weld toe can be reset 

to zero by using grinding and/or hammer peening. 

Table 2. Improvement on fatigue life by different methods according to DNV [13]. 
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Figure 5. Design nominal stress  S-N curves for improvement by BG/TIG and 

Hammer/Needle peening [11]. 

  

 

BG and TIG 

 

Hammer and needle peening 
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2.3 High Frequency Mechanical Impact treatment 

High Frequency Mechanical Impact treatment belongs to the category of residual 

stress altering methods and is similar to hammer and needle peening. The major 

difference is that greater quality results are achieved due to the higher frequency, 

giving smaller spacing between impacts and resulting in better fatigue improvement. 

Figure 6 shows examples of indenter types used in HFMI treatment. As was 

mentioned before, recommendations and guidelines are currently under development 

for this PWT method. Bellow, a way of predicting the improvement is presented 

followed by procedure and quality assurance guidelines. 

 

Figure 6. Example of indenter size and configurations. Photo courtesy of Integrity 

Testing Laboratory (ITL) and Structural Integrity Technologies Inc. (SINTEC) [10]. 

2.3.1 Improvement assessment guidelines 

Marquis et al [10] performed a study and presented a design proposal for HFMI-

improved weld details, taking into account the benefits of increased steel grades. The 

proposal applies for HFMI, independent of what equipment used. Decisive criteria 

that reduce the degree of improvement are identified as plate thickness and weld size 

effects and loading effects, such as stress ratio and variable amplitude loading. It is 

proposed that in a general case, HFMI treating details with steel qualities ≤ 350MPa 

can increase the fatigue strength with four fatigue (FAT) classes, see Figure 7. This 

can be compared to methods like burr grinding or TIG dressing which give an 

increase of two FAT classes for the same material quality [10]. Though, the 

improvements are only allowed on details with fatigue classes of FAT 50 to FAT 90. 

The reason is that other fatigue classes apply for details which are either non-welded, 

have a failure mode other than the weld toe, or are already improved, e.g. ground 

flushed butt welds. 

The design proposal includes three stress assessment approaches, which are nominal 

stress, structural hot-spot stress (SHSS) and effective notch stress (ENS) approaches. 

Nominal stress approach is the most commonly used approach in engineering practice 

today, and usually the method referred to when speaking of FAT classes. For each 

type of assessment approach, appropriate S-N curves are developed with a slope of 

m=5 in the region 1 x 10
4
 < N < 1 x 10

7
 and m´=9 for N > 1 x 10

7
.  

For nominal stress approach, which is a global non-detailed stress assessment method, 

effects of discontinuities are disregarded by the designer and only the average stress in 

the cross section is used. Since the design methodology for nominal stress approach is 

detail-specific, the stress concentrations are accounted for by the corresponding FAT 

classes. In Figure 7, characteristic S-N curves for HFMI-improved details are 
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presented [10]. For comparison, an S-N curve for as-welded FAT 90 is also presented. 

It is noted that for low cycles, the as-welded curve gives better fatigue resistance than 

the corresponding HFMI curve. Thus, no improvement is gained in that region.  

Marquis et al suggest utilization of material strength as an increasing influence on the 

HFMI improvement. Finer steps for the material strength effect is proposed compared 

to recommendations of IIW for needle and hammer peening [10]. Instead of just 

increasing the FAT class once for materials above 355MPa, it is suggested to increase 

it once for every 200MPa of rise in material strength, see Figure 8. In best case 

scenario with no reductions due to thickness and size effects or due to loading effects, 

this suggestion leads to an increase of eight FAT classes with HSS of > 950MPa. 

 

Figure 7. Characteristic nominal stress S-N curves for HFMI-improved welded joints 

for fy ≤ 355MPa. Values in parenthesis represent the FAT class of the joint in the as-

welded condition [10]. 

 

Figure 8. Proposed maximum increase in the number of FAT classes as a function of 

fy [10]. 

SHSS assessment aims to find the case-specific stress concentrations by thorough 

modeling of the welded structure or detail. This approach is a semi global/local stress 

assessment method. Naturally, this leads to completely different stress values 
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compared to nominal stress approach, thus also different S-N curves should be used. 

The ENS approach strives to come around stress singularities at geometrical 

discontinuities (notches) by modeling them with a notch of 1mm radius so that more 

realistic stresses are attained. In this case, the assessment requires detailed local 

modeling and dense finite element meshing. Improvements according to these 

assessment methods are presented in Table 3. For SHSS, two distinctions are made 

regarding fatigue detail categories; load carrying and non-load carrying fillet welds. 

IIW recommendations for hammer and needle peening are also included. 

Table 3. FAT classes of HFMI improvement for structural hot-spot stress and effective 

notch stress [10]. 

 

After the identification of fatigue strength improvement, corrections shall be made 

regarding the weld size and thickness of the plate, reducing the fatigue strength for the 

thicker plates used. The same expression given by the IIW is suggested, equation (1). 

Thickness correction does however not apply for the ENS approach, since the 

thickness effect already is considered in the stress analysis. 

Loading effects shall be regarded by limiting the maximum stresses to 80% of yield 

stress and stress ratios R ≤ 0.5, in accordance with IIW [11]. Reduction of 

improvement must be made for stress ratios between 0.1 and 0.5, see equation (2). 

These recommendations consider the stability of the compressive residual stresses, 

which may become unstable when loaded closely to the yield strength of the material. 

Studies indicate strong beneficial influence of material yield strength on the stability 

of the compressive residual stresses. The stability may also be negatively affected by 

large stress cycles from variable amplitude loading. 

               (2) 

The design procedure presented assumes that no improvement is achieved with HFMI 

treatment for very low cycle fatigue; see the red arrow in Figure 7. For instance, the 

improvement applicability for low strength steel (≤ 355MPa) starts at 72.000 cycles. 

Similarly for HSS (> 750MPa), the improvement applies at 10.000 cycles and above. 

Moreover, the study is applicable for plate thicknesses within the range of 5 to 50mm 

and for steel qualities between 235 to 960MPa 

2.3.2 Procedure and quality assurance 

Marquis and Barsoum [15] give an overview of procedure and quality aspects to 

consider, when assuring that full improvement is achieved after treatment. The 

 

Structural hop-spot stress Effective notsch stress 
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proposal consists of general guidelines based on discussions, presentations and 

experimental evidence published within the Commission XIII of the IIW. In contrast 

to the case of design guidelines, for procedure and quality assurance, the method of 

HFMI treatment is pertinent. Since there are many varieties of HFMI tools and 

technologies available and increasing with time, specific recommendations are not 

given. 

Even though HFMI treatments are regarded as user-friendly, the necessity for the 

operator to get training and understanding of the nature of PWT is discussed by 

Marquis and Barsoum [15]. The importance of using procedure specification 

documents is stressed out. Such documents should be used in similar manner as 

welding procedure specifications, for each weld in a structure. These can be 

customized and developed specifically for different types of equipment. An example 

of such specification (Table 4) is developed by Lopez Martinez and Haagensen [16].  

In rare cases, implementation of HFMI treatment can by itself introduce crack-like 

flaws or other defects if executed incorrectly. It is important to note that PWT is not a 

measure to implement for compensation of insufficient weld quality or poorly 

performed detailing. If the quality or condition of the weld is not good enough, HFMI 

treatment can even result in worse fatigue resistance than as-welded details. This can 

for instance occur due to inappropriate choice of indenter diameter, or excessive 

concavity of the weld, see Figure 9. This can likewise happen if the weld toe is treated 

severely. To ensure that each treatment actually results in the improvement predicted 

by calculations, some quality criteria must be fulfilled. These can be grouped into 

qualitative and quantitative criteria. 

 

Figure 9. HFMI treatment can results in worse fatigue strength than for as-welded 

condition. To the right, a photography of  an HFMI groove is shown where cracking 

occurred due to inappropriate treatment [15]. 

2.3.2.1 Qualitative criteria 

The quality of the groove can be visually examined with magnifying glass and surface 

illumination of at least 350 lx. The groove depth is a good indicator of the level of 

treatment. The groove and its surface should be smooth, shiny, continuous and as 

homogenous as possible, see Figure 10a. I.e. no longitudinal lines from the original 

fusion line (Figure 10b) or transverse lines from individual impacts (Figure 10c) 

should be visible. These would lead to stress concentrations and eventually crack. If 

stops in the treatment cannot be avoided, the procedure should restart at least from 

10mm behind the stop position. 
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Figure 10. a) Defect-free groove, b) thin longitudinal crack, c) transverse ripples 

from individual impacts [15]. 

Table 4. Procedure specification suggested for ultrasonic peening, by Lopez Martinez 

and Haagensen [16]. 
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2.3.2.2 Quantitative criteria 

As mentioned before, groove depth is an important quantity. The groove geometry 

will differ from case to case, depending on material strength and indenter used, but 

should optimally be within 0.2-0.6mm in depth and 3-6mm in width. The width 

should be centered about the position of the original fusion line and not vary more 

than 25% in each direction, see Figure 11. Working speed, maximum and minimum 

number of passes, angles of the impact from indenter and pressure input by the 

operator are all important parameters that need attention. But they are specific for the 

equipment used and should therefore be specified in procedure specification 

documents. 

 

Figure 11. Illustration of the weld before treatment and the HFMI groove. 

Furthermore, weld preparation is necessary. It should consist of careful processing of 

the weld cap and parent material adjacent to it so that no trace of oxide, scale, spatter 

or other materials are left. The weld profile needs to be evaluated according to ISO 

5817 requirements for quality level B, including undercuts, excessive overfill, 

excessive concavity and overlaps. If significant dead-load is present, giving raise to 

tensile stresses in the area intended to be treated, it is recommended to implement the 

HFMI treatment after the structure is put in place and the dead-load applied. 

Otherwise, tension from the dead-load can partially neutralize the favorable 

compressive residual stresses from the treatment. Finally, heat treatment and hot-dip 

galvanizing should be avoided on HFMI-treated structures since they may reduce the 

induced compressive residual stresses. There is currently no method to evaluate these 

effects. 

2.3.2.3 Consequences of treatment variation 

Tehrani Yekta et al [17] investigated the UIT technique by conducting fatigue tests 

with systematic variations in treatment quality. Six test groups were created (A-F). 

Group A consisted of as-welded specimens. Groups B, C and D consisted of 

specimens under-treated by reduced intensity, under-treated by increased speed and 

over-treated by reduced speed, respectively. These specimens were treated by a 

robotic arm in order to eliminate variations induced by operator. Groups E and F 

contained specimens treated properly, either by the robot (E) or manually (F). Three 

different stress ranges and two different loading conditions were studied, thus, totally 

six tests per group. 

The proper treatment speed was considered being 10mm/s and the intensity measure 

of the impacts, equal to 27-29µm. For group B, under-treatment was represented by 

intensity reduction to 18µm. For group C, it was represented by treatment speed 

increase to 20mm/s. For group D, over-treatment was simulated by a speed decrease 

to 1mm/s, over-exaggerating unintended severe treatment. Four passes of treatment 
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were applied on the weld toes of all treated specimens. The first with an angle of 45° 

to the main plate, the second with a deviation of 15° in one direction, the third, 15° 

deviation in the other direction, and the fourth, with 45° again. The first load 

condition (LC1) was CAFL of ratio R=0.1 for stress ranges 200, 225 and 250MPa. 

The second load condition (LC2) was CAFL for the same stress ranges and ratio as 

LC1, but with under-loads (compressive loads with higher stress ranges) as the first 

ten cycles of a repeated 1000-cycle history. The under-load cycles had a ratio of R=-1 

and a magnitude corresponding to a factor 2.2 on the normal stress ranges; i.e. 440, 

500 and 556MPa. Results from this load condition were represented by equivalent 

stress ranges with Miner’s sum, assuming m=3.0, which gave a slightly increased 

value compared to the ranges of LC1, see Figure 13d. 

After treating all specimens, the following observations could be made, see Figure 12. 

For group B which received reduced-intensity treatment, the original weld toe line 

was still visible after four passes. In case of group C with increased treatment speed, 

traces of individual impacts and different passes were well-distinguishable. Over-

treatment (group D) was characterized by significant amount of flaking. For both 

properly treated groups (groups E and F), the groove became uniform and smooth, 

although traces of different passes and impacts were better avoided by manual 

treatment. 

The results from testing are presented in Figure 13. In the as-welded case, a slope of 

3.54 could be observed with a linear regression line of those data points. Considering 

all UIT-treated specimens indifferent of group, a slope of m=5.00 was gained. This 

corresponds exactly to recommendations and observations from other studies, see 

[10][18]. Proper and improper treatments yielded slopes of m=6.41 and m=4.63, 

respectively, when looked at separately. 

 

Figure 12. Treatment results for different test groups. Obvious flaking in case of over-

treatment was observed. Adapted from [17]. 
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Figure 13. S-N curves from Tehrani Yekta et al [17]. 

It was observed that a high degree of improvement was achieved, whether or not the 

treatment was done properly and independent of load condition. This led to the 

conclusion that the UIT process is robust, allowing for certain amount of variation 

within the ranges investigated. From Figure 13d, it was confirmed that UIT is 

sensitive to under-loads with high stress ranges, decreasing in sensitivity as stress 

ranges get lower. 

2.3.3 Overview of fatigue test data with HFMI 

This section is designated for compilation of relevant fatigue tests already carried out, 

partly to get an overview of applicable cases for bridges and partly to identify 

shortages. 

2.3.3.1 Constant Amplitude Fatigue Loading (CAFL) 

Yildirim and Marquis [18] collected fatigue test data from published laboratory tests 

of HFMI-treated specimens. Four types of details were distinguished in a pool of 414 

samples. Longitudinal welds, T-joints, transverse attachments and but joint welds. 

The sample pool differed with respect to plate thicknesses, steel grades and HFMI 

method implemented. Common for the samples were that all of them had small 

thicknesses (≤ 30mm), typically a stress ratio equal to 0.1, and were loaded under 

CAFL. The specifications of the tests are presented in Table 5. Some of the 

conclusions were that an S-N curve slope of m = 5 fit the data well, that the HFMI-

treated specimens had slightly better fatigue strength than hammer peened details and 

 

m=3.54 m=6.41 

m=4.63 m=5.00 

(c) (d) 
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that the reduction method for higher stress ratios than R=0.1, according to equation 

(2), seemed suitable for HFMI-treated details. 

Table 5. Specifications of test samples (constant amplitude axial loading) [18]. 

Steel 
type 

fy [MPa] fu [MPa] R Method 
Plate 

thickness 
[mm] 

Best-fit, 
m 

k 

Longitudinal welds 

S700 700 750 0.1 UP+UIT 8 5.5 16 

S690QL 786 870 0.1 UIT 16 4.5 16 

S690QL 786 870 0.1 HiFIT 16 4 15 

16Mn 390 590 0.1 UP/UPT 8 14 6 

S350 398 503 0.1 UP/UPT 12 5.3 5 

S700 780 850 0.1 UP/UPT 12 3.9 7 

S900 900 1010 0.1 TIG+UP 12 4.48 10 

SS800 700 830 0.1 UP/UPT 8 9.4 8 

16Mn 390 591 0.1 UP/UPT 8 15.8 6 

Q235B 267 435.5 0.1 UP/UPT 8 11.7 7 

S355 355 600 0.1 UIT 8 3.71 10 

S355J2 390 545 0.5 UIT 30 2.97 7 

S960 969 1104 -1 UIT 6 4.81 11 

S700 700 750 -1 UIT 8 4.24 5 

SBHS500 572 661 < 0.5 UIT 12 5.37 10 

SBHS500 572 661 0.5 UIT 12 3.83 12 

SBHS500 572 661 > 0.5 UIT 12 3.09 11 

S960 960 980 0.1 PIT 5 6 11 

T-joint welds 

S420 420 490 0.1 UIT 20 11.70 8 

S700 700 750 0.1 UIT 6 6.9 10 

S700 700 800 0.1 UIT 6 4 21 

S420 420 490 0.1 UIT 20 7.5 7 

S960 960 980 0.1 PIT 5 3.65 7 

Transverse attachments 

S355J2 398.3 537.2 0.1 UIT 12 6.6 7 

S355J2 398.3 537.2 0.1 UIT 12 11.1 4 

S460ML 503.5 553.4 0.1 UIT 12 5.27 5 

S460ML 503.5 553.4 0.1 UIT 12 6.09 5 

S690QL 812.8 870.8 0.5 UIT 12 7.22 6 

S260 260 465 0.0 UIT 20 9.55 9 

S355J2 477 556 0.1 PIT 12 11.6 8 

S690QL 781 827 0.1 PIT 12 6.5 7 

AH36 392 520 0.1 UIT 20 8.9 3 

AH36 392 520 0.1 UIT 20 6.25 3 

AH36 392 520 0.5 UIT 20 8.38 3 

AH36 392 520 -1 UIT 20 18 3 

Butt joint welds 

S355J2 422 524 0.1 UIT 16 7 14 

S355J2 422 524 0.1 HiFIT 16 4.2 18 

S690QL 786 870 0.1 UIT 16 4.5 18 

S690QL 786 870 0.1 HiFIT 16 3.36 12 

S355J2 422 524 0.5 UIT 16 8.9 15 

S355J2 422 524 0.5 HiFIT 16 9 11 

S690QL 786 870 0.5 UIT 16 5 10 

S690QL 786 870 0.5 HiFIT 16 5 12 

E690 763 836 0.1 UP 9.5 3.74 8 

S960 960 980 0.1 PIT 5 7.78 7 
UP = Ultrasonic Peening, UIT = Ultrasonic Impact Treatment, UPT = Ultrasonic Peening Treatment, HiFIT = High Frequency 
Impact Treatment, TIG = TIG dressing, PIT = Pneumatic Impact Treatment, R = stress ratio, k = number of samples 
 
For clarification of specifics, it is referred to [18] 
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2.3.3.2 Variable Amplitude Fatigue Loading (VAFL) 

Yildirim and Marquis [19] also performed a round robin study in which they 

examined effects of variable amplitude fatigue loading (VAFL) on HFMI-treated 

specimens, and simultaneously verified that satisfactory fatigue improvement is 

gained indifferent of which equipment manufacturer chosen. Each manufacturer used 

different HFMI techniques; HiFIT, UP, UPT and UIT. Four manufacturers were 

chosen and distinguished by letters, A-D. Examples of their treatments are shown in 

Figure 14. No specification was made on which treatment that was associated to 

which manufacturer. 

 

Figure 14. Examples of test specimens as-welded and following HFMI treated by four 

equipment manufacturers [19]. 

The same type of detail was selected for all tests; non-load-carrying attachments, 

accurately welded by machine together with 8mm steel plates of grade S700, see 

Figure 15. 24 HFMI-treated specimens (six from each manufacturer) were tested 

under VAFL. The applied load had a stress ratio of R = -1 and contained 14 different 

amplitudes, representing the load spectrum. Four specimens from each manufacturer 

were subjected to maximum nominal stresses of 375MPa and two of them to 480MPa. 

The whole load spectrum was scaled up to achieve the higher maximum stresses. 

 

Figure 15. Illustration of the “non-load carrying longitudinal attachment” test 

specimen used in the study and the weld toes. Adapted from [19]. 

All eight specimens that were subjected to high stresses failed from the weld toe while 

14 out of 16 of those subjected to low stresses failed from the weld root (or gusset, as 

referred to by the authors). The remaining two failed from the weld toe. The results 

were represented with equivalent stress ranges and put into an S-N diagram, see 

Figure 16. The nominal stress fatigue class was identified to FAT 80, before 

treatment. For the treated detail, a fatigue class of 160 was predicted. All test data 

points for treated specimens got situated above this S-N curve. Even though this curve 
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originally was derived based on constant amplitude loading with a stress ratio of R = 

0.1, it was possible to implement it on this study [19]. 

 

Figure 16. Fatigue test results obtained from variable amplitude loading [19]. 

In addition, the residual stress states of eight of the specimens above were measured 

before and after fatigue loading, by X-ray diffraction technique. Two as-welded 

details were also investigated, though loaded under CAFL. The measured data varied 

greatly and it was noted that this measuring technique is highly sensitive to the 

position of measurement point. Nevertheless, a clear overall picture was given which 

showed obvious relaxation of the internal residual stresses after loading, see Table 6. 

Measurements were taken from each weld toe at the end of the attachments, see 

Figure 15. 

Table 6. Residual stress measurements (in MPa). As-welded speciemens were loaded 

under CAFL and HFMI specimens under VAFL. Values within paranthesis are the 

measured standard deviations [19]. 

 

Table 7 presents an overview of studies investigating the effects of VAFL on HFMI-

treated specimens. The details consist of non-load carrying longitudinal attachments 

in all tests. More on effects of VAFL and residual stress relaxation is found in 

[20][21][22]. 
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Table 7. Specifications of test samples (variable amplitude axial loading). k = number 

of specimens. 

Ref. 
Steel 
type 

R Method Plate thickness [mm] k 

[19] S700 -1 HiFIT/UP/UPT/UIT 8 24 

[23] 16Mn 0.1 UPT 8 7 

[24] S700 -1 UIT 8 6 

[24] S960 -1 UIT/UP 6 3 

[25] S690QL -1 Not specified (HFMI) 10 1 

[25] S700MC -1 Not specified (HFMI) 10 1 

2.3.4 HFMI application on bridges 

One of the most important aspects to consider in the application of HFMI on bridges 

is the fact that bridges usually have much larger plate thicknesses in comparison to the 

fatigue test data presented in section 2.3.3. The thickness affects the fatigue resistance 

of a plate for several reasons, which are mostly accounted for in the fatigue 

calculations. But, the least studied thickness effect concerns the depth of which the 

compressive residual stresses from HFMI treatment provide decreased crack 

propagation rate, and how this relates to the whole thickness and influences fatigue 

life. Very few experiments have been conducted to examine HFMI treatment on plates 

thicker than 15mm [3]. 

Three application examples of HFMI on new bridges are presented in this section (1. 

Schenkendorfstrasse, 2. Bridge over Autobahn and 3. Cable car bridge) followed by 

seven examples of HFMI application for repair of existing bridges (4. Ruhrstrom 

Bridge, 5. Ohio River Bridge, 6. Bridge in Ukraine, 7. Gschnitztal Bridge, 8. George 

N. Wade Memorial Bridge, 9. Burignon Bridge and 10. Zürich-Wipkingen Bridge). 

The extent of information found about the treatments on these bridges varied highly. 

Some were found in published papers and some by e-mail exchanges with different 

HFMI manufacturers. 

The Schenkendorfstrasse Bridge in Munich [5] was completed 2009, on which HiFIT 

was considered during early design stage. This construction is a cable-stayed bridge 

with two interconnected decks, hanging from a pylon with three cable pairs, Figure 

17. One of the decks is designated for tram traffic and the other for pedestrian traffic. 

The pylon itself is anchored partly towards the southern end-support, and partly 

westbound perpendicular to the bridge length. In order to meet the strict requirement 

of 100 years fatigue life for the heavy cyclic tram loads, this bridge relies on the 

applied HiFIT treatment of a limited number of details in the superstructure, near its 

northern end, see Figure 18. The treated details mainly consist of the welded 

flange/web connections of the main girders near the bridge end, connections between 

cross beams and main girders and connections to the supports. In Figure 19, the 

construction phase is illustrated. 
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Figure 17. Schenkendorfstrasse Bridge in Munich, from southern end (left) [26] and 

from east (right) [27]. 

 

Figure 18. Overview of treated details in the Schenkendorfstrasse Bridge, adapted 

from [28]. 

 

Figure 19. HiFIT treatment in construction phase of the Schenkendorfstrasse Bridge 

[28]. 
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Over the Autobahn (A73) between Suhl-Lichtenfels in Germany spans a 100m long 

tubular truss bridge. This unique bridge is the first of its kind in Germany, since the 

nodes are welded together instead of, as usual for tubular bridges, being pre-cast as 

one unit. The bridge is made of steel S355 and was designed based on UIT fatigue 

enhancement of 32 of the highest stressed nodes [29]. More information on this bridge 

is found in [30] and [31]. 

 

Figure 20. UIT-treated bridge over the Autobahn (A73) between Suhl and Lichtenfels 

[30]. 
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Based on previous positive experience of PIT treatment of tubular guideways in 

Oakland (California) Airport, this fatigue enhancement technique was also used in 

design for cable car guideways of tubular frame girders in Las Vegas, USA [32]. The 

fatigue requirements for such structures are stricter when over-bridging roads and 

motorways, according to American codes. Therefore, PIT treatment was used to meet 

these requirements without changing the original design. Laboratory tests conducted 

at the University of Stuttgart and the University of Seattle (WA) showed an increase 

of fatigue life with a factor of 4.5 after PIT was implemented. 

 

Figure 21. Tubular guideways for cable cars in Las Vegas [32]. 

 

Figure 22. Laboratory tests conducted for the cable car guideways in USA [29]. 
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The Ruhrstrom Bridge is located in Mülheim-Duisburg in Germany [28]. It has been 

in operation since 1971 and consists of parallel bridges with chains of identical simply 

supported steel superstructures, carrying railways across the Ruhr-river and meadows 

nearby, see Figure 23. The main girders and end cross beams are made of steel S355, 

while the rest of structure mainly is made of steel S235. In connection with an 

inspection of the bridge, cracks of 20mm were found in the main girders at the welded 

joints to transverse stiffeners. Attempts of preventing further crack growth was made 

by drilling, but cracking still continued to a length of 45mm whereafter drilling was 

performed again with enlarged holes and the allowed train speed was reduced. The 

damages were explained to be due to the design principle where the frequency of the 

dynamic lateral loads from the trains happened to fall in the spectrum of the bridges 

natural frequency in that direction. Extensive improvements were performed on the 

bridge, both in transverse direction by crossbars connected with bolts, and in 

longitudinal direction to alter the dynamic behavior of the bridge. For the non-

damaged transverse stiffeners, HiFIT treatment was used to prevent future damage 

and it was proven to be an easy and simple process [28]. 

 

Figure 23. Ruhrstrom Bridge treated with HiFIT [28]. 

  



CHALMERS, Civil and Environmental Engineering, Report 2014:8 
26 

The next example regards the use of UP as a measure of weld rehabilitation of one of 

the Ohio River Bridges in USA [33], see Figure 24. The concerns regarding the 

fatigue life of this 30 year old bridge arose when a similar bridge with approximately 

the same age failed in one of its spans due to fatigue cracking in welded elements. 

Since no fatigue macro-cracks were found in the bridge to be refurbished, thousands 

of welded details with a total weld length of 500m were treated with UP and the 

fatigue performance was enhanced [34]. 

 

Figure 24. UP-treated bridge over the Ohio River, USA [34][35]. 

A railway bridge over the Dnepr River in Ukraine was also treated with UP after a 

fatigue crack of approximately 1 meter was detected during a regular inspection [34], 

Figure 25. The crack was situated between the web and the upper flange, and was 

repaired by re-welding. After reparation, UP was implemented to prevent fatigue 

cracking in the new weld. 

 

Figure 25. UP-treated bridge in Ukraine [34]. 
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Here follows an example regarding HFMI treatment on the 674m long Gschnitztal 

Bridge in Austria [36] over which the Brenner Autobahn passes, see Figure 26. There 

has continuously been a large increase of traffic during the years, especially of heavy 

trucks, on this route which is why this bridge was widened from two to three lanes in 

each direction, in 1986. The steel structure was nevertheless kept unchanged, with 

exception of some minor reinforcing measures [37]. Fatigue cracking occurred at the 

welded transitions between transverse stiffeners and the main girders. Based on 

positive and convincing results from fatigue testing in laboratory, the cracks were 

repaired and the details improved with PIT treatment in 2009. In the lab, shown in 

Figure 27, an as welded specimen was subjected to cyclic loading of 200MPa at stress 

ratio R=0.1. Cracking started after 568 000 cycles on one side of a welded plate. The 

loading was stopped and the crack repaired by re-welding followed by PIT treatment 

of the new welds. Subsequently, the loading was continued to 2 368 000 cycles 

(568 000 + 1 800 000) till new cracking occurred on the other side, which was not 

repaired nor treated. Figure 28 shows some of the treated details on the bridge. As can 

be seen, both weld toes of the fillet welds were treated and at corners, concave 

indenters were used. 

 

Figure 26.The Gschnitztal Bridge treated with PIT [36]. 

 

Figure 27. Test specimen loaded in laboratory [38]. 
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Figure 28. PIT-treated details on the Gschnitztal Bridge [38]. 

According to the company SONATS [39], the bridge in Figure 29 which is located in 

Pennsylvania-USA was UIT-treated at longitudinal web stiffeners and gusset plate 

terminations, and also walkway connection plate attachments to floor beams. The 

author identified this construction to be the George N. Wade Memorial Bridge. 

 

Figure 29. UIT treatment on the George N. Wade Memorial Bridge [39][40]. 
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The Burignon Bridge is an 18m long railway bridge, situated in Chardonne in 

Switzerland, close to Lake Geneva, Figure 30 (left). In 2010, K-seams along the 

bridge were HFMI-treated, according to Neher [41]. On the Zürich-Wipkingen 

Bridge, Figure 30 (right), needle peening was performed on longitudinal details in 

1999 [42]. 

 

Figure 30. The Burignon Bridge treated with HFMI [43] (left) and the Zürich-

Wipkingen Bridge treated with needle peening [44]. 
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3 FE-modeling of HFMI-treated welded details 

To model the behavior of HFMI-treated welded details, three different phenomena 

need to be described; the state of residual stresses from welding, the induced residual 

stresses from HFMI treatment and the fatigue behavior including crack initiation and 

propagation. There are alternative ways of conducting these simulations. Some 

examples of the methods used in the field are presented below. 

3.1 Modeling of welding 

Barsoum [45] has focused on modeling of residual stresses in welded structures and 

their effects on the fatigue behavior of welded joints. The consideration of initial 

residual stresses due to welding in the context of fatigue resistance is of high 

relevance. The tensile residual stresses are often in the magnitude of the materials 

yield strength, unfavorable for the fatigue resistance and contribute to increased crack 

growth rate. The effects of increased tensile residual stresses on the S-N curve are 

schematically described below, see Figure 31. These stresses both lower the curve and 

steepen its slope. 

 

Figure 31. Schematic illustration of the effects of increased tensile residual stresses. 

Adapted from [45]. 

To model the residual stress field from welding with the help of FE simulation, it is 

realized that some simplifications are necessary in order to obtain reasonable 

computation times, yet maintaining good accuracy [45]. Therefore, 2D FE models 

were used by Barsoum. A constant heat input was assumed across the weld filler 

section and the heat input was calibrated either by comparison to experimental data, 

where available, or by adjustments to accomplish reasonable molten zone size and 

geometries of the heat distribution from the weld.  

Furthermore, the material properties of the weld filler, the heat affected zone and the 

base metal were assumed to be the same. Steel properties are highly dependent on the 

temperature, often varying non-linearly. Such properties are thermal conductivity, 

specific heat, yield stress and thermal expansion coefficient. For some of these 

properties, describing the exact behavior is not necessary to attain correct residual 

stresses, which is why they were simplified where appropriate. These assumptions 

were incorporated in FE simulations and compared to measurements from 

experiments, see Figure 32. It was concluded that the simulations yielded good 

agreement with reality [45].  

 

log S 

log N 
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Many researchers have put efforts into understanding residual stresses from welding 

through FEA. Therefore the knowledge of modeling them is well-developed and 

today considered a standard procedure [46][47][48][49]. 

 

Figure 32. Temperature results from FE simulation of a but-weld compared to 

measurements from experiments [45]. Results and measurements were taken from 

distances 15, 21, and 27 mm from the weld. 

3.2 Modeling of HFMI treatment 

Baptista et al [50] made FE analyses to simulate the hammer peening PWT technique. 

This technique is essentially the same as HFMI, though, differing in the frequency at 

which the indenter impacts the material.  

They modeled the hammer peening indenter as an elastic material and the impact load 

was made fully dynamic, capturing the realistic behavior of the impacts, see Figure 

33. Moreover, they used non-linear elasto-plastic material properties including 

kinematic hardening for the plate to be treated, and contact conditions that allowed 

separation after impact in the normal direction. A friction coefficient of 0.5 was used 

for the tangential direction. 

 

Figure 33. Hammer peening tool velocity variation during operation and the FE 

model visualization [50]. 
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Residual stress results obtained from simulations were compared to test results, 

measured with X-ray diffraction and pointed towards satisfying agreement, with 13% 

difference in longitudinal direction and 7% difference in transversal. More research in 

this field is found in [51][52][53][54]. 

3.3 Modeling of fatigue 

Fatigue modeling of welded joints can be made on the basis of Linear Elastic Fracture 

Mechanics (LEFM). Fracture mechanics is a well-established way of modeling crack 

propagation in materials and it was first introduced during the World War I, by 

engineer A.A. Griffith.  

In linear elasticity theory, a geometric discontinuity such as a crack tip, will give rise 

to stress concentrations approaching infinity. In LEFM, this problem is handled by 

viewing it from a thermodynamic aspect, where the relationship between the elastic 

energy stored in the loaded material, and the energy required to create two new 

surfaces in a crack, will give the appropriate behavior of the crack propagation. This 

approach is dependent on an initial crack length, thus not capable of describing the 

crack initiation phase, essential for simulation of PW-treated details. Therefore, it is 

necessary to simulate the crack initiation phase, or by other means calculate the 

number of cycles for crack initiation. Bellow follows some studies performed in order 

to appropriately capture fatigue behavior with numerical simulations. 

3.3.1 Prediction with initiation phase modeling 

In the context of weld toe failure, the initiation occurs from the surface and is 

dependent on the surface roughness. The crack initiation phase is a highly 

microstructural phenomenon, thus, exhibiting a very different behavior in comparison 

to the crack propagation phase. For instance, the cracking direction in the initiation 

phase is shear driven and stochastic in an early stage, dependent on the individual 

orthotropic crystal grain orientations. After micro-crack coalescence, the crack 

direction becomes 45° to the load direction as increasing in length. While in the 

propagation phase, the direction is perpendicular to the global principal tensile 

stresses.  

The basics of the crack initiation process can in short words be described as micro-

crack development through occurrence of slip bands in grains. Slip bands arise as 

planes in the crystalline structure within grains due to movement of dislocations as a 

result of loading. Micro-cracks develop through these slip bands and coalesce with 

other cracks from grains nearby into a dense area. From this area, larger cracks start to 

develop, to later become perpendicular to the principal tensile stresses and fall into the 

propagation phase. 

Jezernik et al [55] strived to improve the existing numerical Tanaka-Mura model for 

crack initiation in order to better resemble fatigue behavior, especially for High Cycle 

Fatigue (HCF). Two deficiencies were identified in this model. The first was that only 

slip bands in separate grains were considered, therefore not simulating any coalescing 

features. The second was that only the average shear force across the grain were 

considered for nucleation of micro-cracks, which especially in case of HCF does not 

yield satisfactory results. 

Three improvements were suggested, and used to simulate fatigue strength of a plain 

steel plate with a circular hole in the middle and compare to experiments. The first 

improvement was to permit several parallel slip band positions in the same grain 
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instead of only one going through the center. The second, a method to connect 

adjacent micro-cracks into one longer crack, allowing different micro-cracks to 

coalesce. The third, to allow segmented micro-cracking through the grain instead of 

just one cracking step through the whole grain, and usage of more accurate shear 

stresses compared to the average stress over the grain. 

Results obtained from the simulations are presented in Table 8 and comparisons to 

experiment results are shown in Figure 34. For the crack propagation phase, LEFM 

was used with Paris law. The crack growth parameters C = 6x10
-9

 MPa√  and m=3 

were used. The length and direction of the crack obtained from the initiation phase 

was used as an initial crack for the propagation simulation. As is observed in Figure 

34, the initiation phase plays a key role in these specimens, especially as the stress 

ranges decrease. It was concluded that the simulations yielded reasonably good results 

compared to experiments, although further investigations were proposed. The 

modeling of the initiation phase is a vast and complicated research topic. In the 

following references, more studies are available [56][57][58]. 

Table 8. Initiation and propagation results from simulation [55]. 

Load Level (MPa) 600 550 500 485 
Initiation cycles 216 000 485 000 1 480 000 ∞ 
Propagation cycles 28 000 35 000 44 000 / 
Total cycles 244 000 520 000 1 542 000 ∞ 

 

Figure 34. Simulation results compared to experiment results and derived S-N curve 

[55]. 

3.3.2 Prediction with other models 

It is known, that residual stress based PWT techniques, such as hammer peening, 

needle peening and HFMI treatments, retard the crack growth rate in the areas where 

compressive residual stresses are introduced. These effects can be taken into account 

by introducing stress fields into the LEFM models. However, these stresses can be 

relaxed, particularly when the structure is subjected to compressive loads and periodic 

compressive overloads. Moreover, it is suspected that the use of linear material 

models when assessing residual stress based PWT techniques gives over-optimistic 

improvement predictions.  

Walbridge [59] developed a strain-based fracture mechanic model to predict the 

whole fatigue life of peened details, based on the same numerical integrations 

performed in LEFM, but with several modifications. These account for non-linear 

materials, stress relaxation, crack closure and short crack behavior. The predictions 

made by this strain-based model were compared to both experiments and results from 

LEFM simulations. The model was able to predict improvements both under CAFL 
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and VAFL with periodic overloads, accurately. Little difference was gained compared 

to LEFM simulations for low stress levels. However, for high stress levels and 

negative stress ratios with compressive overloads, the fatigue lives from this model 

were shorter in comparison to those of LEFM, as was suspected. Furthermore, it was 

concluded that the magnitude of the overloads had an important role in reducing the 

degree of improvement, while that initial crack properties had little influence for most 

CAFL conditions. The greatest influence of initial crack properties were observed for 

high stress ranges and ratios [59]. More on fatigue prediction models is found in the 

following references; [60][61][62][63][64][65][66][67]. 

  



CHALMERS, Civil and Environmental Engineering, Report 2014:8 
35 

4 Discussion and summary 

Post weld treatment is a more or less well established method for fatigue 

enhancement, depending on industry. In offshore industry, it has become a common 

method, while for the bridge industry, experiences have not come as far. Even though 

there are some examples of PWT implementations on bridges, the need of further 

research in this field is necessary and the potential benefits from it are substantial. 

This has been emphasized in most of the research found. 

Among all improvement techniques, HFMI, which is a peening method, seems to be 

the most promising. This, due to the high potential increase in fatigue strength it 

imposes and better qualities that can be achieved compared to other peening methods. 

A study of treatment quality variation concluded that UIT is a robust method, yielding 

significant improvements even if pronounced over/under-treatment is achieved. 

Although basically no international codes cover improvements with PWT, 

recommendations have been established and for HFMI, guidelines are being 

developed both regarding improvement assessment and procedure and quality 

assurance. 

The guidelines are based on experimental data, mainly coming from relatively thin 

plates (<30mm) and CAFL with stress ratios equal to R=0.1. Few samples of yield 

strengths less than 355MPa are present. The number of different thicknesses and yield 

strengths in the sample pool presented in Table 5 is illustrated in Figure 35. Thick 

plate sizes and material yield strengths equal to or less than 355MPa are common and 

of high importance when implementing HFMI on bridges. 

 

Figure 35. Thickness and yield strength distribution for data from Table 5 (CAFL). 
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VAFL can either be simulated by its actual variations in the structural detail, or with 

constant blocks of loads with different amplitudes, derived from e.g. Rainflow or 

Reservoir methods. Whichever is used in testing, the fact that they can decrease the 

magnitude and benefits of the compressive residual stresses from HFMI is known, 

especially at overloads where stresses get close to the material yield strength. The 

steel grade has a very important effect with regard to relaxation of the stresses 

induced by HFMI. In the study presented for VAFL in 2.3.3, residual stresses were 

measured before and after loading [19]. Although obvious residual stress relaxation 

was observed, the improvement prediction gave correct results with substantial 

increase in fatigue strength anyway, however, quantification of the relaxation and 

possible differences between ways of modeling VAFL need more investigation.  

Since fatigue testing is a costly procedure, the idea of modeling fatigue behavior by 

FEM with respect to HFMI treatment has been raised. To do this, one need to account 

for the crack initiation and propagation phases, taking into consideration the internal 

residual stresses from welding and HFMI. With the help of FEA, the effects of the 

parameters of importance for bridges can then be evaluated; for instance, different 

thicknesses and different compressive residual stresses and geometries from HFMI, 

resembling variation of treatment quality. 

Two promising studies are presented in 3.3.1 and 3.3.2 that predict fatigue life in 

different ways and yield satisfactory results. However, the study performed in 3.3.1 

was only made on plain steel with a discontinuity in form of a hole. Implementing this 

method on a welded detail improved by HFMI does imply some challenges. For 

instance, welding a detail dramatically changes the microstructural properties in the 

material affected by the heat. Usually, analyzing the fatigue of a welded detail 

basically includes modeling crack propagation with LEFM. But when the weld toe is 

HFMI-treated, the initiation phase must now also be regarded, having to account for 

the microstructural change due to welding. Then also, the question arises whether if 

HFMI in itself also changes the microstructure of the steel significantly or not, aside 

from geometry and residual stresses, and how this can be accounted for. Due to the 

complexity described in connection with initiation phase modeling, it is considered 

that simpler fatigue life predictions, for instance by means of strain-based fracture 

mechanics are more feasible when analyzing HFMI-improved details.  

Since fatigue failure occurs with a relatively large variation, one cannot draw 

conclusions regarding the adequacy of the FE simulations in a manner of strict 

quantitative comparison to experiment results. The orders of magnitudes are of more 

interest and evaluation of data points in S-N curves give a better understanding of the 

adequacy of the FE models. Further research is needed to investigate special cases and 

cover circumstances for bridges. 

Examples of nine bridges, including railway, tram & pedestrian, cable car and 

roadway bridges could be found where HFMI treatment had been used and one 

railway bridge on which needle peening had been applied. The information available 

varied between the bridges, but was generally quite scarce.  
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