
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at Rail Lille 2017.

Citation for the original published paper:

Ait Ali, A. (2017)
Disaggregation in Bundle Methods: Application to the Train Timetabling Problem.
In:

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202554

 1

Disaggregation in Bundle Methods: Application

to the Train Timetabling Problem

Abderrahman Ait Ali a,1, Per Olov Lindberg a,2, Jan-Eric Nilsson 3,

Jonas Eliasson a,4, Martin Aronsson 5
a Department of Transport Science, KTH Royal Institute of Technology

Teknikringen 10, 114 28 Stockholm, Sweden
1 E-mail: abde@kth.se, Phone: +46 (0) 8 790 9439

2 E-mail: polin@kth.se
3 E-mail: jan-eric.nilsson@vti.se

4 E-mail: Jonas.eliasson@abe.kth.se
5 E-mail: martin@sics.se

Abstract

Bundle methods are often used to solve dual problems that arise from Lagrangian

relaxations of large scale optimization problems. An example of such problems is the train

timetabling problem. This paper focuses on solving a dual problem that arises from

Lagrangian relaxation of a train timetabling optimization program. The dual problem is

solved using bundle methods. We formulate and compare the performances of two

different bundle methods: the aggregate method, which is a standard method, and a new,

disaggregate, method which is proposed here. The two methods were tested on realistic

train timetabling scenarios from the Iron Ore railway line. The numerical results show that

the new disaggregate approach generally yields faster convergence than the standard

aggregate approach.

Keywords

Train timetabling; disaggregation; bundle methods; lagrangian relaxation; mathematical

programming.

1 Introduction

Several train timetabling models have been developed in various contexts, see e.g.

(Caprara et al., 2006), (Jamili et al., 2012) and (Xu et al., 2014). Those models are often

based on mathematical programming such as Integer Programming (IP) or Mixed Integer

Programming (MIP) combined with solution methods that use the mathematical properties

of the model.

One of the early and most cited papers to deal with this problem and research area is

(Brännlund et al., 1998). The paper presents a MIP formulation of the train timetabling

problem (TTP). The MIP model is NP-hard and thus difficult to solve for large

applications of the problem. The authors use a Lagrangian relaxation solution approach

where the track capacity constraints are relaxed and assigned prices or multipliers. A dual

iterative scheme with a heuristic to find feasible solutions is used to solve the dual

problem.

Several solution methods aggregate the different train requests while solving the dual

problem. For instance, (Caprara et al., 2002) proposed a multigraph theoretical

 2

formulation of the problem to derive an integer linear programming model. The model

was solved using Lagrangian relaxation of the constraints associated with the nodes in the

graph. However, there was not any use of disaggregation between the different train

requests.

It is possible to include many interesting functional constraints into the train

timetabling model. (Caprara et al., 2006) developed a more realistic model by including

several functionalities such as infrastructure maintenance, timetable prescription and

manual block signalling. A Lagrangian heuristic algorithm was used to solve the problem

without disaggregating the train requests.

(Schlechte, 2012) presents a group of models and algorithms for railway track

allocation which includes integer programming models. The problem was formulated

using the standard train scheduling graph. The model was later improved by taking

advantage of the structure of the headway conflicts. The combinatorial problem was

solved using a two-step solution method. The first step is to solve a linear relaxation of the

problem using proximal bundle method without disaggregation. The second step is to

solve the original problem using the linear relaxation solution with a sophisticated branch

and price algorithm.

One property of the train timetabling problem which has yet not been thoroughly

investigated, is the disaggregation property between the train requests. In this application

to train timetabling, disaggregation uses a problem property in order to speed up the dual

solution methods by dividing the aggregate problem into smaller sub-problems for each

train request.

This paper starts from an aggregate formulation based on the model in (Brännlund et

al., 1998) before deriving a novel bundle method approach to solve the dual problem,

which arises from the relaxation of (TTP). This novel approach uses the disaggregation

property of the problem. We compare this disaggregate bundle method with the

traditional aggregate approach. We first present the problem, the notations and the

mathematical model. Second, we derive and describe the solution approach where we

distinguish between the aggregate and disaggregate approach. Finally, the comparative

numerical results are given and relevant conclusions are drawn.

2 Mathematical Model

2.1 Problem Description

The network that is considered in the train timetabling problem is a single track line. This

does not affect the generality of the problem. The line is discretized into different blocks.

The blocks are of two types: station blocks where the trains are allowed to meet and

signalling blocks where they are not. Each block of the line has a certain capacity that

represents the number of tracks in that particular block. In particular, station blocks have a

capacity higher or equal to one whereas signalling blocks have a capacity of one. Figure 1

illustrates the two types of blocks in a stretch of a single-track line.

 3

Figure 1- A stretch of a single-track rail line

In a station block, the train can either pass at full speed if no compulsory stop is

requested, or stop before leaving for the next destination. In a signalling block, the train

can pass without stopping or wait. This leads to four different speed scenarios in each

block depending on the state of the train at the entrance or exit of the block: FF, SF, SS,

FS where F is full speed state and S is stopping state. In Figure 2, the four scenarios are

illustrated; FF is the fastest scenario and SS is the slowest. SF and FS are slower than FF

but faster than SS.

Figure 2 -The four different train speed scenarios between two train stations

In these different scenarios, the acceleration and deceleration (i.e. braking) properties of

the trains play an important role in determining the travel time for the different scenarios.

2.2 Notations

The time is discretized into time intervals denoted t ∈ 𝒯 = {1, … , T}. Similarly, the single

track line is discretized into blocks labelled b ∈ ℬ = {1,… , B}. The train requests for

traffic are denoted r ∈ ℛ = {1, … , R}.
It is possible to see this problem in a graph perspective. Indeed, for each train request

r, the different possibilities to perform its traffic is given by a network 𝒩r = (𝒜r, 𝒱r),
where nodes 𝒱r represent positions in space and time (ℬ×𝒯), and whose arcs 𝒜r

represent train movements. The same graph perspective is also mentioned in (Brännlund

et al., 1998). For instance, one arc could be “leaving block b1 at time t, accelerating from

 4

standstill, travelling to block b2 without retarding there”, or “standing still at block b1

from time t to t + 1”.

Each train request r thus has a finite set of feasible paths p ∈ 𝒫r (from a starting station

Sr
s through the network to an ending station Sr

e) to perform its duties. A path p is an

ordered subset of 𝒜r that describes the trajectory of the train in time and space. The set of

all train paths is 𝒫 = ⋃ 𝒫rr . Furthermore, we assume that one of the feasible paths is the

“null path” that corresponds to not scheduling the train request.

For a certain path p ∈ 𝒫r for a train request r ∈ ℛ, the train movement of arc a ∈ p ⊆
𝒜r leads to the (not necessarily physical) occupation of a certain block-times, given by

the matrix ∆𝐚= (δbt
a) with

𝛿𝑏,𝑡
𝑎 = {

1 if movement 𝑎 occupies blocktime (𝑏, 𝑡)

0 otherwise
. (1)

To each path p ∈ 𝒫r is associated a utility value vp of choosing the path. We will

return to the properties of this value in Section 4.2.

The following summarizes the different notations that will be used in this paper.

- Sets

𝒯 Set of time intervals {1, 2, … , 𝑡, … , 𝑇}.
ℬ Set of space blocks {1, 2, … , 𝑏, … , 𝐵}.
ℛ Set of train requests {1, 2, … , 𝑟, … , 𝑅}.
𝒫𝑟 Set of paths for train request 𝑟 ∈ ℛ.

𝒫 = ⋃ 𝑃𝑟𝑟 Set of all train paths.

- Parameters

𝑐𝑏 Capacity of space block 𝑏.

𝛿𝑏,𝑡
𝑎 Capacity usage in time 𝑡 of block 𝑏 for train movement 𝑎.

𝑣𝑝 Value of the allocation of path 𝑝.

- Decision variables

𝑥𝑝 ∈ {0,1} Allocation state of path 𝑝 ∈ 𝒫.

2.3 Model

The TTP is now to select one path p for each train request r, such that capacity limits are

not violated, and such that the total timetable utility is maximized. By introducing a binary

indicator variable xp for the selection/non-selection of path p to be run, the problem can

be stated as follows:

(𝑇𝑇𝑃)

{

 𝑚𝑎𝑥

𝑥𝑝
∑𝑣𝑝𝑥𝑝
𝑝∈𝒫

𝑠. 𝑡.

{

 ∑(∑𝛿𝑏,𝑡

𝑎)

𝑎∈𝑝

𝑥𝑝 ≤ 𝑐𝑏 , ∀(𝑏, 𝑡) ∈ ℬ×𝒯 (𝑖)

𝑝∈𝒫

∑ 𝑥𝑝 = 1, ∀𝑟 ∈ ℛ (𝑖𝑖)

𝑝∈𝒫𝑟

𝑥𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝒫 (𝑖𝑖𝑖)

. (2)

Constraints (2.i) are the capacity constraints of the blocks, (2.ii) the constraints to

 5

choose exactly one path for each train request, and (2.iii) are the binary constraints on the

path selection variable xp.

The factor (∑ δb,t
a)a∈p in front of xp in (2.i) corresponds to the capacity consumption

of path p on block-time (b, t). It can be denoted as dbt
p

 and therefore regrouped in the

matrix dp = (dbt
p
). Therefore, constraints (2.i) become

∑𝑑𝑏𝑡
𝑝
𝑥𝑝

𝑝∈𝒫

≤ 𝑐𝑏 , ∀(𝑏, 𝑡) ∈ ℬ×𝒯. (2.i’)

We will use this new form in all the formulations that follow.

3 Solution Methods

(TTP) is an IP with a very large number of binary variables. The combinatorial nature of

the problem makes it extremely difficult to solve for large instances using the-state-of-the-

art IP solvers. In ordered to get around the computational complexity of the problem, we

use the classical Lagrangian relaxation technique as the starting point for the solution

method.

In the Lagrangian relaxation of (TTP), we are allowed to violate constraints (2.i’), but

at a certain price given by the corresponding Lagrangian multipliers μ = (μbt) ≥ 0. The

relaxed (TTP), noted (TTP)μ, is formulated as

(TTP)𝜇

{

 𝜑(𝜇) ≔ max∑𝑣𝑝

𝑝∈𝒫

𝑥𝑝 + ∑ 𝜇𝑏𝑡(𝑐𝑏 −∑𝑑𝑏𝑡
𝑝

𝑝∈𝒫

𝑥𝑝
(𝑏,𝑡)∈ℬ×𝒯

)

𝑠. 𝑡. {
∑ 𝑥𝑝 = 1, ∀𝑟 ∈ ℛ

𝑝∈𝒫𝑟

𝑥𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝒫

. (3)

(TTP)μ is a relaxation of (TTP) since every feasible solution to (TTP) is also a feasible

solution to (TTP)μ , and the objective value of any feasible solution in (TTP) is not

greater than that in (TTP)μ . Hence, for each value of μ, the objective value φ(μ) in

(TTP)μ is larger than or equal to the optimal value of (TTP).

It is possible to further simplify the objective value of (𝑇𝑇𝑃)𝜇. For a given 𝜇 ≥ 0 and

under the same constraints as in (3), 𝜑(𝜇) can be rewritten as

𝜑(𝜇) = ∑ 𝑐𝑏𝜇𝑏𝑡
(𝑏,𝑡)∈ℬ×𝒯

+𝑚𝑎𝑥
𝑥𝑝

∑(𝑣𝑝 −

𝑝∈𝒫

∑ 𝜇𝑏𝑡𝑑𝑏𝑡
𝑝

(𝑏,𝑡)∈ℬ×𝒯

)𝑥𝑝 . (4)

The factor in front of 𝑥𝑝 in (4) or the term (𝑣𝑝 − ∑ 𝜇𝑏𝑡𝑑𝑏𝑡
𝑝

(𝑏,𝑡)∈ℬ×𝒯), can be considered

as a reduced utility revenue from choosing path 𝑝 ∈ 𝒫 (i.e. 𝑥𝑝: = 1) under the current

multipliers 𝜇 . Thus, (TTP)𝜇 decomposes into one shortest-path problem for each train

request 𝑟 ∈ ℛ. Such shortest path problems have well-established solution algorithms and

are relatively easy to solve. In this model, we developed a shortest path algorithm based

on topological sorting. This is justified by the fact that the train movements network is a

weighted directed acyclic graph (Cormen et al., 2009).

 6

3.1 Dual Problem

As just noted, 𝜑(μ) is larger than or equal to the optimal value of the original problem

(TTP), for any μ ≥ 0. It is therefore an upper bound to the optimal value of (TTP). Thus,

the dual problem (D) is to find the optimal solution μ∗ that gives the best (i.e. smallest)

upper bound.

(D) {
min 𝜑(𝜇)
𝑠. 𝑡. 𝜇 ≥ 0

 (5)

Since there are only a finite number of shortest path combinations, 𝜑 is piecewise

linear (or rather piecewise affine). It is therefore a convex function since it is the

maximum of a set of linear functions. Moreover, 𝜑 has a lower bound, i.e. any feasible

solution to the original problem (TTP). Therefore, (D) has a global minimum 𝜑∗ at the

optimal multipliers 𝜇∗.
Let us assume that for an arbitrary value 𝜇̅ ≥ 0, the maximum in (TTP)𝜇̅ is achieved

at x̃(μ̅) = (𝑥̃𝑝)𝑝∈ 𝒫. Inserting the corresponding x̃(μ̅) in the objective of (TTP)𝜇 gives a

linear (in μ) function 𝜑̃(μ) = ∑ 𝑣𝑝𝑝∈𝒫 𝑥̃𝑝 + ∑ 𝜇𝑏𝑡(𝑐𝑏 −∑ 𝑑𝑏𝑡
𝑝

𝑝∈𝒫 𝑥̃𝑝𝑏𝑡) , that is equal to

𝜑(μ) at μ̅. This linear function corresponds to a supporting plane to the graph of 𝜑. The

slope of this function is given by the matrix 𝑔(𝜇̅) = (𝑔̅𝑏𝑡) ≔ (𝑐𝑏 − ∑ 𝑑𝑏𝑡
𝑝

𝑝∈𝒫 𝑥̃𝑝) which is

a subgradient of 𝜑 at μ̅. Thus the supporting linear function to 𝜑 at μ̅ can be written as

𝜑(𝜇̅) + 𝑔(𝜇̅) ∗ (𝜇 − 𝜇̅), (6)

where * denotes the inner product between two matrices (i.e. component wise).

In order to solve (D), we use the aggregate bundle method described in (Kiwiel, 1990).

Based on this method, a novel disaggregate approach is derived that uses the

disaggregation property in the train timetabling problems.

3.2 The Aggregate Bundle Method

For μ = μ̅ , the (possibly many) x̃(μ̅) giving the maximum in (TTP)𝜇 give the

subgradients to 𝜑 at μ̅. Suppose that we currently are at μ = μ𝑘, and that we have chosen

to approximate 𝜑 by the supporting planes computed in iterations 𝑙 ∈ ℒ𝑘, where ℒ𝑘 is the

bundle at iteration 𝑘 from the previous iterations. Let the corresponding subgradients be

{𝑔𝑙}𝑙∈ℒ𝑘 . Then in the standard aggregate bundle method, we compute a new tentative

solution as the solution to the following sub-problem

(D̅k
agg
) {

min 𝜑̅𝑘(μ) +
𝑢𝑘
2
|μ − μ𝑘|

2

s. t. μ ≥ 0,
 , (7)

where |∙| denotes the Euclidean norm (or 2-norm) of a matrix reshaped into a vector, and

𝜑̅𝑘(μ) ∶= max𝑙∈ℒ𝑘{𝜑(𝜇𝑙) + 𝑔𝑙 ∗ (𝜇 − 𝜇𝑙)} is the maximum of the supporting linear

functions at μ𝑙 , for 𝑙 ∈ ℒ𝑘, giving an outer linearization of 𝜑. The quadratic second term

helps avoid taking too large steps and the step size is adjusted using the control parameter

𝑢𝑘 at each iteration.

 7

In order to get around the inner maximization, (D̅k
agg
) can be formulated as a single

minimization problem by adding an additional variable as well as new constraints for the

supporting linear functions. This leads to the following equivalent problem

(D̅k
agg
) {

min 𝑣 +
𝑢𝑘
2
|μ − μ𝑘|

2

 𝑠. 𝑡. {
𝑣 ≥ 𝜑(𝜇𝑙) + 𝑔𝑙 ∗ (𝜇 − 𝜇𝑙), ∀𝑙 ∈ ℒ𝑘 (𝑖)

𝜇 ≥ 0 (𝑖𝑖)

 . (8)

The matrices 𝛍𝒍 for 𝑙 ∈ ℒ𝑘 can be extremely large and lead to an excessive memory

usage. Therefore, we suggest an equivalent formulation of the supporting linear functions

in which scalars are stored instead of the matrices. We define this scalar, at k and for all

𝑙 ∈ ℒ𝑘, as

𝛹𝑘𝑙 ∶= 𝜑(μ𝑙) + 𝑔𝑙 ∗ (μk − μ𝑙). (9)

Hence, the problem in (7) becomes

(D̅k
agg
) {

min 𝑣 +
𝑢𝑘
2
|𝜇 − 𝜇𝑘|

2

𝑠. 𝑡. {
𝑣 ≥ 𝛹𝑘𝑙 + 𝑔𝑙 ∗ (𝜇 − 𝜇𝑘), ∀𝑙 ∈ ℒ𝑘 (𝑖)

𝜇 ≥ 0 (𝑖𝑖)

. (10)

The 𝛹𝑘+1,𝑙 has to be updated recursively whenever the multipliers are updated, which

means when 𝜇𝑘+1 ≠ 𝜇𝑘. The update scheme is

𝛹𝑘+1.𝑙 = 𝛹𝑘.𝑙 + gl ∗ (μ𝑘+1 − μ𝑘), (11)

so that the supporting linear functions always have the current 𝝁𝑘 as “foot point”.

Let 𝑦𝑘+1 be the optimal solution to (D̅k
agg
). At 𝑦𝑘+1 we evaluate the dual objective 𝜑

by solving (𝑇𝑇𝑃)𝜇 for 𝜇 = 𝑦𝑘+1. We might then get a new supporting plane, including a

new subgradient 𝑔𝑘+1 . We define the achieved descent as 𝜑̅𝑘(μ𝑘) − 𝜑(y𝑘+1) and the

forecasted one as 𝜑̅𝑘(μ𝑘) − 𝜑̅
𝑘(y𝑘+1). If the ratio of the achieved descent by the

forecasted one is larger than a certain step quality threshold 𝑚𝐿 ∈ (0,1) then we set

𝜇𝑘+1 = 𝑦𝑘+1, and the new ℒ𝑘+1 will incorporate the active supporting planes from ℒ𝑘 as

well as the newly generated supporting plane. If otherwise the ratio is not large enough,

we set 𝜇𝑘+1 = 𝜇𝑘 and ℒ𝑘+1 will only add the newly generated supporting plane to ℒ𝑘 .

Thus, the polyhedral approximation of 𝜑 is improved at each iteration.

The step control parameter 𝑢𝑘+1 is adjusted in both cases. It is set so that the curvature

of the objective in (D̅k
agg
) between 𝜇𝑘 , and yk+1 fits that of 𝜑 . The parameter has a

minimum value, and is never decreased by a factor of more than 10 as in (Kiwiel, 1990)

3.3 The Disaggregate Bundle Method

In the disaggregated bundle method, we squeeze more information out of the solutions to

the subproblems (TTP)𝜇 by considering a disaggregate dual objective. The dual objective

function can be separated into independent functions for each train request.

 8

𝜑(μ) = ∑𝜑𝑟(μ) + ∑ 𝑐𝑏𝜇𝑏𝑡
(𝑏,𝑡)∈ℬ×𝒯

,

𝑟∈ℛ

 (12)

where 𝜑𝑟 is defined for each train request 𝑟 ∈ ℛ as

𝜑𝑟(𝜇) ≔ max ∑(𝑣𝑝 −

𝑝∈𝒫𝑟

∑ 𝜇𝑏𝑡𝑑𝑏𝑡
𝑝

(𝑏,𝑡)∈ℬ×𝒯

)𝑥𝑝

𝑠. 𝑡. {
∑ 𝑥𝑝 = 1, (𝑖)

𝑝∈𝒫𝑟

𝑥𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝒫𝑟 (𝑖𝑖)

, (13)

which is the maximum income of train request r ∈ ℛ under the current multipliers μ. The

multipliers can be interpreted as train access charges of using the rail infrastructure, an

interpretation that we will return to in the concluding section.

The disaggregate dual problem, noted (Ddis), will be slightly different from (D) that is

used in the aggregate approach.

(Ddis) {
min∑𝜑𝑟(μ) + ∑ 𝜇𝑏𝑡

(𝑏,𝑡)∈ℬ×𝒯

𝑐𝑏
𝑟∈ℛ

s. t. μ ≥ 0

. (14)

At iteration k in the disaggregate approach, each objective component φr, has its own

bundle ℒk
r , with the subgradients defined as grl: = −d

p̂rl , where p̂rl ∈ 𝒫r is the shortest

path in the sense that it leads to the maximal revenue for μ = μl in (TTP)μ.

As with the aggregate approach, we use the subgradients to build supporting linear

functions that are used as an outer approximation. In the disaggregate approach the outer

approximation is computed for each objective component 𝜑𝑟 . Thus, the disaggregate

bundle method problem is written as follows:

(D̅k
dis)

{

 min∑𝑣𝑟

𝑟∈ℛ

+
𝑢𝑘
2
|μ − μ𝑘|

2

 𝑠. 𝑡. {
𝑣𝑟 ≥ 𝜑𝑟(μ𝑙) + grl ∗ (μ − μ𝑙), ∀𝑙 ∈ ℒ𝑘 ∀𝑟 ∈ ℛ (𝑖)

𝜇 ≥ 0 (𝑖𝑖)

. (15)

In order to minimize the memory storage in the implementation, as with the aggregate

approach, instead of storing all the previous matrices of multipliers 𝛍𝑙, we only store the

corresponding scalar parameters Ψ𝑟,𝑙
𝑘 that we define similarly as follows

Ψ𝑟,𝑙
𝑘 : = 𝜑𝑟(μ𝑙) + grl ∗ (μk − μ𝑙). (16)

The parameters are updated in a similar way to the aggregate case that is previously

described. Thus, the formulation in (14) can be rewritten using the scalar parameters. So,

at iteration k, we have

 9

(D̅k
dis)

{

 min∑𝑣𝑟 + ∑ 𝑐𝑏𝜇𝑏𝑡

(𝑏,𝑡)∈ℬ×𝒯

+
𝑢𝑘
2
|𝛍 − 𝛍𝒌|

2

𝑟∈ℛ

s. t. {
𝑣𝑟 ≥ Ψ𝑟,𝑙

𝑘 + 𝐠𝐫𝐥 ∗ (𝛍 − 𝛍𝒌), ∀ 𝑙 ∈ ℒ𝑘
𝑟 , ∀𝑟 ∈ ℛ (𝑖).

𝛍 ≥ 0 (𝑖𝑖)

 (17)

We can further simplify (16) by introducing 𝒔 = 𝛍 − 𝛍𝐤 to get the following

formulation

(𝐷̅𝑘
𝑑𝑖𝑠)

{

 min∑𝑣𝑟 + ∑ (𝜇𝑏𝑡

𝑘 + 𝑠𝑏𝑡)

(𝑏,𝑡)∈ℬ×𝒯

𝑐𝑏 +
𝑢𝑘
2
|𝐬|2

𝑟∈ℛ

s. t. {
𝑣𝑟 ≥ Ψ𝑟,𝑙

𝑘 + 𝐠𝐫𝐥 ∗ 𝐬, ∀ 𝑙 ∈ ℒ𝑘
𝑟 , ∀𝑟 ∈ ℛ (𝑖)

𝐬 ≥ −𝛍𝐤 (𝑖𝑖)

. (18)

4 Experimental Setup and Results

4.1 Implementation

Both solution methods, i.e. the aggregate and the disaggregate bundle method, are

developed in MATLAB. The methods call a C++ program that computes the shortest path

given the prices 𝜇 of occupying the block-times. The information between the two

programming environments is exchanged using mex functions which are subroutines that

allow MATLAB programs to call C, C++ and Fortran programs (MathWorks, 2016).

In order to speed up the computation of the shortest path algorithm, the paths networks or

the graphs of possible train movements are constructed once, and are stored in the C++

environment memory for use in all the iterations of the bundle method. Therefore, the

MATLAB program (i.e. bundle method) calls at first a C++ function that allocates

memory and constructs the train movement graphs from the input data before performing

the bundle iteration. Figure 3 gives an overview of the software architecture that was

implemented.

Figure 3 - Software architecture of the model implementation

 10

4.2 Input Data

The input data that is used to test the two implementations is based on the information

from train operations of the Iron Ore line (Malmbanan) in northern Sweden. The stretch

that is considered is between Kiruna (Sweden) and Narvik (Norway) as in Figure 4.

Figure 4 - Map of the Iron Ore line with the stretch between Narvik and Kiruna.

The data was provided by the Swedish National Transport Administration

(Trafikverket). It consists of the following information:

 Signalling blocks

 Waiting stations

 Travel time between signalling blocks for different scenarios (SF, SS, FS, FF)

 Capacity of waiting stations

In this study, we consider, for the sake of simplicity, only one type of trains having the

same speed properties for the different requested train paths.

The data includes a list of 32 train requests from a typical weekday on the line. There

are 6 passenger trains are operated by SJ AB and the remaining 26 freight trains are

operated by three different freight operators: Green Cargo, Hector Rail and MT AB. The

train request information includes:

 Departure and arrival stations

 Ideal departure time

 Latest arrival time at final destination

For each departure, we assume a departure time window of one hour. This means that

trains are allowed to depart at the earliest 30 min before the ideal departure time and 30

min at the latest.

Since it was difficult to get data about the valuation of each train request, we used a

simplified valuation function. It is a triangular function that has a peak at the ideal

departure time and decreases linearly within the departure window. This refers to the

definition in Section 2.2 of a utility value vp associated with each path p ∈ 𝒫r. The value

of the path may depend on how close it is to the ideal departure or arrival time, whether

the train must be sided along the line in order to way for other trains thus adding to total

travel time. In this particular case a distinction is mainly between freight and passenger

services. The peak value is (arbitrarily) set to 500 for freight train requests and 1000 for

passenger train requests which are generally more valuable when they depart on time.

Figure 5 illustrates the valuation function.

 11

Figure 5 - Simplified valuation function of train requests

In addition, we use a minimal compulsory waiting time of 2min in stations as well as a

3min headway between trains as a blocking rule to ensure a certain safety distance.

In order to check the models on different problem instances, we constructed four

different test cases from the given data. Each test case corresponds to the problem of

scheduling 32 trains, 26 freight trains with a peak value of 500 and 6 passenger trains with

1000. Table 1 lists the different instances and characteristics.

Table 1 - Test cases and their characteristics

Test Termini # of stations # of blocks

S1 Narvik - Bjørnfjell 5 14

S2 Kiruna - Vassijaure 7 23

S3 Kiruna - Torneträsk 14 51

S4 Narvik - Kiruna 19 70

The tests cases correspond to an increasingly long stretch of the Iron Ore line. The

requested train paths are as previously described and are the same in the different test

cases except that the trains depart from and arrive to different termini depending on the

test case.

4.3 Results and Discussions

The tests were executed on a remote computer with two processors Intel(R) Xeon(R) CPU

E5645. Each processor has a clock frequency of 2.40 GHz and 12 MB cache memory; the

RAM memory is 80 GB.

The models have several parameters and initialisations to be set before starting the

execution. The values that were used for those parameters are given in Table 2.

 12

Table 2 - Algorithm parameters and their values

Parameter Value

Time discretization step 30 seconds

Step quality threshold 𝑚𝐿 = 0.1 (= 10%)
Initial step control value 𝑢0 = 1

Minimal step control 𝑢𝑚𝑖𝑛 = 10−10
Maximal number of iteration 𝑘𝑚𝑎𝑥 = 200

Initial prices 𝜇0 = 0

Tolerance (stopping condition) 𝜖 = 10−13

Both models were tested under the same conditions, i.e. same machine, parameters and

input data. Figure 6 shows the comparison between the dual objective in the aggregated

and disaggregate approaches for the test cases S1 – S4.

Figure 6- dual objective for the two approaches in the test cases S1 – S4 (left to right,

up to down)

 13

In the four test cases, the optimization of the dual objective function has a similar

behaviour for the two approaches in the first iterations. However, after a certain number of

iterations, the minimization in the disaggregate approach becomes faster as more

information is collected in the iteration bundle. This leads to a faster convergence using

the disaggregate approach.

Each test case leads to an optimization model with a different size, for instance a

different number of constraints or variables. The model characteristics of the dual

optimization problem (D) are presented in Table 3 for each test case.

Table 3 - Test cases and dual optimisation model characteristics

Test # of variables (= # of constraints)

S1 40 208

66 056

146 472

201 040

S2

S3

S4

Table 4 gives the numerical results regarding the computational time for the test cases.

The initialization time corresponds to the time needed to construct the train movement

graph. In this step, the algorithm constructs a large space-time graph that includes all the

possible train paths. The graph construction time increases when the number of blocks and

stations increase or when the time discretization step decreases. This is however done

once for each scenario and hence the time is the same for the two approaches. The

execution time corresponds to the time the model takes to compute the solution before

stopping. It consists of the time needed to compute several shortest path problems over the

previously constructed large graph. It also includes the time needed to solve the quadratic

optimisation problem in the bundle method for each iteration.

Table 4- Startup and convergence time in the test cases S1 – S4

Test Initialization

time

(in min)

Execution

time –

aggregate

(in min)

Execution

time –

disaggregate

(in min)

Execution

time

improvement

* (in %)

S1 26.44 40.36 24.11 40.3

S2 39.17 49.71 27.13 45.4

S3 213.19(≈ 3.5h) 209.09(≈ 3.5h) 169.72(≈ 2.8h) 18.8

S4 374.49(≈ 6.2h) 334.94(≈ 5.6h) 253.80(≈ 4.2h) 24.2

* The improvement is relative to the convergence time of the aggregate approach.

The computational results in Table 4 show that the disaggregation approach yields an

improvement of up to 45% compared to the aggregate in computing the solution to the

dual optimisation problem. In addition to this improvement in the execution time, the

disaggregation approach is parallelizable, i.e. multiple processors can be used to solve the

shortest path subproblems parallelly. This will further improve the computation time and

is suggested for future work.

In contrast to Table 4, Figure 6 does not clearly show a faster convergence in the

disaggregate approach. More complex problem instances would reveal more clearly the

convergence properties of the disaggregate bundle method.

 14

Testing the two approaches provided also additional useful information. For instance,

the solution to the dual problem corresponds to an optimal pricing of the infrastructure in

space-time which is visualized in

Figure 7 for the first test case S1. Some blocks during some time periods have higher

prices than others. These are the blocks corresponding to the requested origin and

destination stations during the requested departure and arrival times. The final prices are

generally similar between the two approaches with the disaggregate approach yielding

slightly higher prices. This slight difference is due to the convergence tolerance that is

used in the stopping condition.

Figure 7- The final pricing and timetable for the two approaches from test case S1

 15

In each iteration, the shortest path algorithm is called to find the best paths for a given

pricing. This leads to the generation of a set of potentially optimal paths in each iteration.

Therefore, each train request has a set of paths which contains an optimal path (including

the null path, i.e. cancelling the train) that will be selected in the final optimal timetable.

An example of such as set of path is illustrated in the following figure (from the first

request in the test case S4).

The model chooses a new path in each iteration based on the pricing of the

infrastructure (Figure 7) by avoiding expensive paths. Figure 8 shows the set of generated

paths for one of the train requests (first request in test case S4). It is important to notice

that the disaggregate approach yields more paths than the aggregate one which means that

it covers more possible solutions in the feasible space. This is very beneficial for a future

implementation of a Branch & Bound (B&B) method. These paths will be used later in

B&B to find a better feasible solution of the original problem since more potentially

optimal paths were generated.

It is also important to note that the null path is always part of such a set which allows to

cancel requested trains.

Figure 8- Set of generated paths for the same requested train path using the two

approaches (from the first requested train path in test case S1).

 16

5 Concluding remarks and Suggestions for Future Work

Lagrangian relaxation is a classical method to solve large scale optimization problem such

as the train timetabling problem. The optimization of a dual objective function is often

needed in order to gain diverse information about the original problem. Such information

can be, for instance, the lower or upper bound of the objective value, Lagrangian

multipliers of the relaxed constraints.

Being able to quickly solve the dual problem is very important especially if it is

iteratively solved within another optimization model such as Branch & Bound. This paper

investigated the potential of a disaggregate approach to speed up the bundle based

solution methods for the train timetable problem. This approach is compared with the

classical aggregate bundle method. We have demonstrated that the novel approach shows

better computational performances in solving the dual problem arising from the relaxation

of a train timetabling problem. The novel approach yields faster convergence compared to

the classical approach.

In the example given, the value of being allocated a train path has been arbitrarily set

at different levels for freight and passenger services. It has been suggested that this input

to the optimisation exercise emanates from an explicit bidding process where different

operators define the paths they request and the value function of being allocated a path.

The utility value vp associated with the allocated path p ∈ 𝒫r then specifies the operator’s

benefit of being able to run each service. Solving the track allocation problem more

generally comprises two components; the optimisation problem which is addressed by the

present paper; and the valuation problem which can be handled by operators submitting

bids for each path. The latter problem was addressed in Nilsson (2002).

These results have a positive impact on the execution time of train timetabling

optimization models that are based on Lagrangian relaxation. To show this, we suggest to

investigate the use of the disaggregate approach in a complete Branch & Bound based

timetabling model. This has a potential to improve the quality of the final feasible

timetable.

References

BRÄNNLUND, U., LINDBERG, P. O., NÕU, A. & J.-E, N. 1998. Railway Timetabling

using Lagrangian Relaxation. Transportation Science, 32, 358-369.

CAPRARA, A., FISCHETTI, M. & TOTH, P. 2002. Modeling and solving the train

timetabling problem. Operations Research, 50, 851-861.

CAPRARA, A., MONACI, M., TOTH, P. & GUIDA, P. L. 2006. A Lagrangian heuristic

algorithm for a real-world train timetabling problem. Discrete Applied

Mathematics, 154, 738-753.

CORMEN, T. H., LEISERSON, C. E. & RIVEST, R. L. 2009. Introduction to Algorithms

(3), Cambridge, US, The MIT Press.

JAMILI, A., SHAFIA, M. A., SADJADI, S. J. & TAVAKKOLI-MOGHADDAM, R.

2012. Solving a periodic single-track train timetabling problem by an efficient

hybrid algorithm. Engineering Applications of Artificial Intelligence, 25, 793-

800.

 17

KIWIEL, K. C. 1990. Proximity control in bundle methods for convex nondifferentiable

minimization. Mathematical Programming, 46, 105-122.

MATHWORKS. 2016. Introducing MEX Files [Online]. source MEX fileC, C++, or

Fortran source code file. Available:

http://se.mathworks.com/help/matlab/matlab_external/introducing-mex-

files.html [Accessed October 2015].

NILSSON, J.-E. 2002. Towards a welfare enhancing process to manage railway

infrastructure access. Transportation Research Part A, 36, 419–436.

SCHLECHTE, T. 2012. Railway Track Allocation: Models and Algorithms. University of

Berlin.

XU, X., LI, K., YANG, L. & YE, J. 2014. Balanced train timetabling on a single-line

railway with optimized velocity. Applied Mathematical Modelling, 38, 894-909.

http://se.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
http://se.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html

